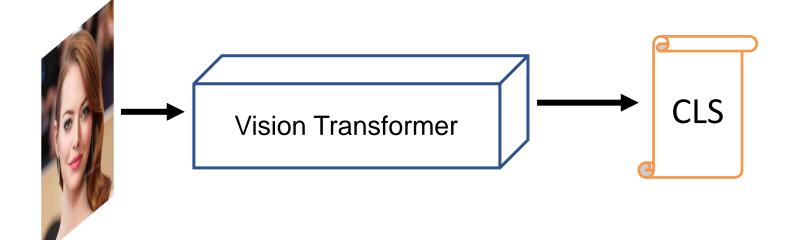
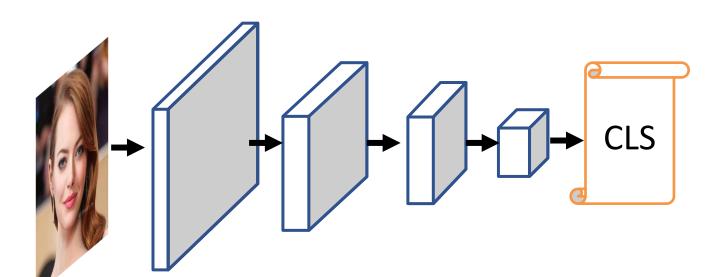


Μ	oti	vati	ion

- □ Vision transformers for general face recognition (FR) and age-invariant FR is not well-studied.
- Working with limited computational resources and mediumscale datasets are critical challenges for FR.
- Are vision transformers better for recognizing general and age-invariant face recognition?
- How much training data would ViT require to obtain state-ofthe-art results on such tasks?
- □ How can we develop specific designed for FR?



In traditional ViT, we have single scale features containing MHA and a feed forward network.



In pyramid networks, high- and low-level features are merging for better face recognition.

Related Work

Transformer for Face Recognition

ViT-P (arxiv'21), investigated first ViT for face recognition

Face Pyramid Vision Transformer Khawar Islam, Muhammad Zaigham Zaheer and Arif Mahmood

Goal

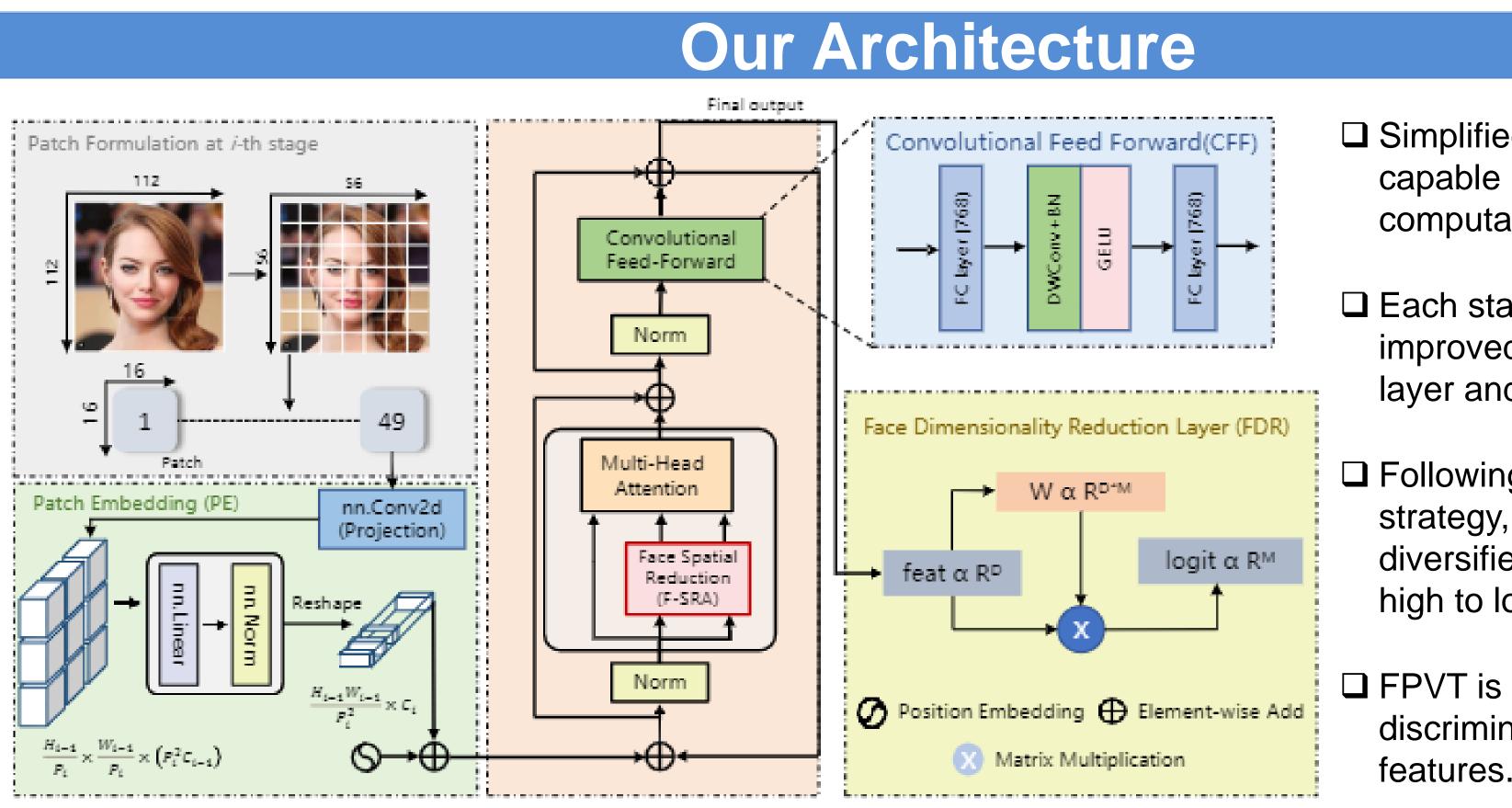
- Learning multi-scale features with global and local context.
- □ Simplified single architecture for general and age-invariant face recognition

Challenges

- Conventional ViTs fail when train on limited data under limited computational resources.
- Extracting global context while ignoring local features and information.
- Pure ViTs do not improve performance against CNNs for FR.

Contributions

- □ First attempt to learn multi-scale discriminative features.
- Considering benefits of CNNs to model lower-level edges to higher-level semantic primitives.
- Capturing local representations while considering long-range relationships.
- □ Reduce the computations of large feature maps via simplified MHA.
- □ Make the facial feature map compact using a data dependent algorithm.
- □ Extensive experiments on LFW, CA-LFW, CP-LFW, Age-DB, CFP-FF, CFP-FP, and VGG2-FP datasets.



Results												
Methods		LFW (family)		Age-DB	Methods	Dim	Depth	Param	CFP (family)		VGG2-FP	
	LFW	CA	СР				Берш	T dram	FF	FP		Plugged module
ResNet-18	76.7	60.7	58.1	61.4	ResNet-18	-	-	30.7M	76.7	52.2	61.4	by module
IR-50	91.7	78.1	68.9	73.4	IR-50	-	-	65.1M	91.7	74.2	73.4	CFNN and OA
IR-SE-50	90.5	65.8	68.7	65.8	IR-SE-50	-	-	65.5M	90.5	71.6	65.8	add significant
DeepViT	75.5	62.6	57.1	59.7	DeepViT	512	6	11.6M	75.5	56.1	59.7	accuracy gains on all dataset
CaiT	83.4	71.5	57.5	62.2	CaiT	512	3	7.8M	83.4	56.6	62.2	
ViT	81.9	67.7	58.9	61.4	ViT	512	6	17.8M	81.9	58.9	61.4	FSRA decreased
ViT+IPE	82.5	68.5	61.1	63.1	ViT+IPE	512	6	17.9M	82.5	60.6	63.1	parameters from
PiT	80.6	66.6	58.7	64.6	PiT	64	20	12.5M	80.6	57.2	64.6	33.3M to 28.8M.
CvT	82.5	69.1	57.1	63.7	CvT	64	10	19.8M	82.5	56.4	63.7	
CeiT	84.8	72.6	60.1	65.8	CeiT	64	20	21.5M	84.8	59.1	65.8	IPE increases
PVT	78.8	66.8	55.1	59.9	PVT	512	18	32.2M	78.8	52.9	59.9	performance on
+IPE	82.9	70.1	59	65.6	+IPE	512	6	33.3M	82.9	56.4	65.6	six datasets.
+CFFN	86.7	72.9	62.1	68.9	+CFFN	512	6	33.3M	86.7	61	68.9	
+FDR	87.4	73.9	61.6	70.1	+FDR	512	6	33.3M	87.4	61.5	70.1	
+OA	91.4	77.4	68.9	74.5	+OA	512	6	33.3M	91.4	71.8	74.5	
FPVT	92.0	77.0	67.8	75.0	FPVT	512	6	28.2M	92.0	73.3	75.0	

□ Simplified view of our FPVT capable of training under limited computational resources.

□ Each stage comprises of an improved patch embedding layer and an encoder layer.

□ Following progressive shrinking strategy, the output resolution is diversified at every stage from high to low resolution.

□ FPVT is capable of computing discriminative compact facial