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In vision transformer, we have single scale features containing MHA and Feed forward network. We are not merging any features because it contains single encoder block

Motivation Goal

❑ Learning multi-scale features with global 

and local context.

❑ Simplified single architecture for general 

and age-invariant face recognition

Challenges

❑ Conventional ViTs fail when train on 

limited data under limited computational 

resources.

❑ Extracting global context while ignoring 

local features and information.

❑ Pure ViTs do not improve performance 

against CNNs for FR.

Related Work

Related Works

❑ Transformer for Face Recognition

▪ ViT-P (arxiv’21), investigated first ViT for face recognition

Figure 1: A simplified view of Face Pyramid Vision

Our Architecture

Contributions

Results

❑ Vision transformers for general face recognition (FR) and 

age-invariant FR is not well-studied.

❑ Working with limited computational resources and medium-

scale datasets are critical challenges for FR.

❑ Are vision transformers better for recognizing general and 

age-invariant face recognition?

❑ How much training data would ViT require to obtain state-of-

the-art results on such tasks?

❑ How can we develop specific designed for FR?

❑ First attempt to learn multi-scale 

discriminative features. 

❑ Considering benefits of CNNs to model 

lower-level edges to higher-level 

semantic primitives.

❑ Capturing local representations while 

considering long-range relationships.

❑ Reduce the computations of large 

feature maps via simplified MHA.

❑ Make the facial feature map compact 

using a data dependent algorithm.

❑ Extensive experiments on LFW, CA-

LFW, CP-LFW, Age-DB, CFP-FF, CFP-

FP, and VGG2-FP datasets.

CLSVision Transformer

In traditional ViT, we have single scale features containing 

MHA and a feed forward network.

CLS

In pyramid networks, high- and low-level features are 

merging for better face recognition.

❑ Simplified view of our FPVT 

capable of training under limited 

computational resources. 

❑ Each stage comprises of an 

improved patch embedding 

layer and an encoder layer. 

❑ Following progressive shrinking 

strategy, the output resolution is 

diversified at every stage from 

high to low resolution.

❑ FPVT is capable of computing 

discriminative compact facial 

features.

Methods
LFW (family)

Age-DB
LFW CA CP

ResNet-18 76.7 60.7 58.1 61.4

IR-50 91.7 78.1 68.9 73.4

IR-SE-50 90.5 65.8 68.7 65.8

DeepViT 75.5 62.6 57.1 59.7

CaiT 83.4 71.5 57.5 62.2

ViT 81.9 67.7 58.9 61.4

ViT+IPE 82.5 68.5 61.1 63.1

PiT 80.6 66.6 58.7 64.6

CvT 82.5 69.1 57.1 63.7

CeiT 84.8 72.6 60.1 65.8

PVT 78.8 66.8 55.1 59.9

+IPE 82.9 70.1 59 65.6

+CFFN 86.7 72.9 62.1 68.9

+FDR 87.4 73.9 61.6 70.1

+OA 91.4 77.4 68.9 74.5

FPVT 92.0 77.0 67.8 75.0

Methods Dim Depth Param
CFP (family)

VGG2-FP
FF FP

ResNet-18 - - 30.7M 76.7 52.2 61.4

IR-50 - - 65.1M 91.7 74.2 73.4

IR-SE-50 - - 65.5M 90.5 71.6 65.8

DeepViT 512 6 11.6M 75.5 56.1 59.7

CaiT 512 3 7.8M 83.4 56.6 62.2

ViT 512 6 17.8M 81.9 58.9 61.4

ViT+IPE 512 6 17.9M 82.5 60.6 63.1

PiT 64 20 12.5M 80.6 57.2 64.6

CvT 64 10 19.8M 82.5 56.4 63.7

CeiT 64 20 21.5M 84.8 59.1 65.8

PVT 512 18 32.2M 78.8 52.9 59.9

+IPE 512 6 33.3M 82.9 56.4 65.6

+CFFN 512 6 33.3M 86.7 61 68.9

+FDR 512 6 33.3M 87.4 61.5 70.1

+OA 512 6 33.3M 91.4 71.8 74.5

FPVT 512 6 28.2M 92.0 73.3 75.0

❑ Plugged module 

by module

❑ CFNN and OA 

add significant 

accuracy gains 

on all dataset

❑ FSRA decreased 

parameters from 

33.3M to 28.8M.

❑ IPE increases 

performance on 

six datasets.


