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1 Model Details Stages Output Size Layer Name OPVT

1 H
4 × W

4

Patch Embedding P1 = 7; C1 = 64

Transformer Encoder

 R1 = 8
N1 = 1
E1 = 4

×2

2 H
8 × W

8

Patch Embedding P2 = 3; C2 = 128

Transformer Encoder

 R2 = 4
N2 = 2
E2 = 4

×2

3 H
16 ×

W
16

Patch Embedding P3 = 3; C3 = 256

Transformer Encoder

 R3 = 2
N3 = 4
E3 = 4

×2

4 H
32 ×

W
32

Patch Embedding P4 = 3; C4=512

Transformer Encoder

 R4 = 1
N4 = 8
E4 = 4

×2

Table 1: Calculated settings and the
design principles follow the same
rules of PVT [5]. e denotes MLP ra-
tio, whereas, r represents resolution,
and n denotes the number of heads.

The proposed FPVT parameters are described as
follows: For the ith stage, pi is the patch-size, ci
is the number of output channel, li is the number of
layers in encoder, ri is the reduction-ratio in F-SRA,
hn is the number of heads, ei is the expanding-ratio
of convolutional FFN.

Following the design principles of SwinT [4]
and PyramidT [5], we utilize the small number of
output channels in shallow stages and focus the ma-
jor computational resource in the middle stages. To
provide instances of FPVT, we present only one
model of our method which is presented in Table. 1.
The number of parameters of FPVT is smaller than
ResNet-18 [2], IR-18 [1], IR-SE-18 [3].

2 Inference Speed

We evaluate the inference speed of our proposed FPVT architecture, in order to present its
feasibility under limited computational resources on real-time applications. We compare the
FPVT speed with general ViT models on LFW dataset.The proposed FPVT provides a better
recognition accuracy with the inference speed of general ViTs is 0.37s per image whereas
our FPVT achieves 0.32s.
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