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Abstract

In neural networks, the property of being equivariant to transformations improves
generalization when the corresponding symmetry is present in the data. In particular,
scale-equivariant networks are suited to computer vision tasks where the same classes
of objects appear at different scales, like in most semantic segmentation tasks. Recently,
convolutional layers equivariant to a semigroup of scalings and translations have been
proposed. However, the equivariance of subsampling and upsampling has never been
explicitly studied even though they are necessary building blocks in some segmentation
architectures. The U-Net is a representative example of such architectures, which includes
the basic elements used for state-of-the-art semantic segmentation. Therefore, this paper
introduces the Scale Equivariant U-Net (SEU-Net), a U-Net that is made approximately
equivariant to a semigroup of scales and translations through careful application of
subsampling and upsampling layers and the use of aforementioned scale-equivariant
layers. Moreover, a scale-dropout is proposed in order to improve generalization to
different scales in approximately scale-equivariant architectures. The proposed SEU-Net
is trained for semantic segmentation of the Oxford Pet IIIT and the DIC-C2DH-HeLa
dataset for cell segmentation. The generalization metric to unseen scales is dramatically
improved in comparison to the U-Net, even when the U-Net is trained with scale jittering,
and to a scale-equivariant architecture that does not perform upsampling operators inside
the equivariant pipeline. The scale-dropout induces better generalization on the scale-
equivariant models in the Pet experiment, but not on the cell segmentation experiment.

1 Introduction
Convolutional Neural Networks (CNN) are based on convolutional layers and achieve state-
of-the-art performance in many image analysis tasks. A translation applied to the inputs of
a CNN is equivalent to a translation applied to its features maps, a property illustrated by
Figure 1(a). This property is a particular case of group equivariance [2] and helps improve the
generalization of the network to new data if the data has translation symmetry. An operator
φ : X → Y is equivariant w.r.t. a group if applying a group action in the input and then
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Figure 1: Example of equivariance in the cases of translation and scaling. In this case, φ is an
ideal operator that computes the semantic segmentation of images. The operators Tv and Rs
are, respectively, a translation and a re-scaling.

(a) Training scale

(b) Unseen scale
Figure 2: Example where a U-Net trained on one scale and is applied to predict an output on
the training(a) and an unseen(b) scale. The image with the unseen scale represents the same
object but the U-Net no longer segments it correctly.

φ , amounts applying a group action to the output of φ given the original inputs. This is
illustrated in Figure 1. In addition to translations, group actions can model many interesting
classes of spatial transformations such as rotations, scalings, and affine transformations.
Group equivariant CNNs [2] are a generalization of CNNs that are equivariant to some
transformation group. Many approaches focus on equivariance to rotations, in different kinds
of data [2, 13, 15, 16] and to scalings [3, 6, 18].

Deep scale-spaces [17] introduce neural networks equivariant to the action of semigroups,
instead of groups. Semigroup actions are considered as they can model non-invertible
transformations, and the authors focus on equivariance to downsampling in discrete domains
as a way to address equivariance to scalings without creating spurious information through
interpolation. This seminal work laid the basis to define scale-equivariant CNNs, although
it only focused on convolutional layers and did not address the equivariance of pooling and
upsampling layers, which are key elements in many neural architectures, such as U-Net.

The U-Net [9] has become famous for its great performance in semantic segmentation. It
is a fully convolutional neural network, i.e. a CNN without any dense layer, and therefore it is
equivariant to a certain subgroup of translations. However, architectures like U-Net are not
scale equivariant a priori, and experiments show they are not in practice [10] as illustrated
by Figure 2. A scale-equivariant counterpart of such an architecture is desirable as scale
symmetry is frequently present in semantic segmentation data. For example, in urban scenes,
objects of the same class appear at different scales depending on their distances to the camera.

In this work we introduce the Scale-Equivariant U-Net (SEU-Net) based on semigroup
cross-correlations [17] and an adapted use of pooling and upsampling. The rest of the paper
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is organized as follows. In Section 2 we discuss some of the related work in the literature.
In Section 3 we review the semigroup equivariant neural networks. The main contribution
of this paper, the SEU-Net, is introduced in Section 4 along with its fundamental building
blocks. The whole architecture is tested empirically for its equivariance in Section 5. More
precisely, we test the SEU-Net 1 in segmentation tasks where the test images are in scales
unseen during training, on the Oxford-IIIT Pet [8] and the DIC-HeLa cell [14] datasets. The
SEU-Net is shown to overperform the U-Net even when the latter is training with large values
of scale jittering. The paper ends in Section 6 with some conclusions and perspectives for
future work.

2 Related Work
Scale-equivariance and scale-invariance are topics already discussed in the deep learning
literature [3, 4, 6, 11, 18]. The experimental benchmarks found in those papers are interesting
as a first way to measure equivariance, but tend to be based on very simple tasks, such as
the classification of re-scaled digits from the MNIST dataset or low resolution images of
clothes from the Fashion-MNIST dataset. In [12], combinations of base filters are optimized to
minimize the equivariance error of discrete scale convolutions. This is applied to classification,
tracking and geometry estimation, but not segmentation.

In [17], instead of treating the scaling as an invertible operation, such as it would behave in
a continuous domain, it is considered the action of downsampling the input image in a discrete
domain. Therefore a semigroup-equivariant generalization of the convolution is introduced.
Specifically, the focus is put on a semigroup of scalings and translations. These operators can
be efficiently applied even on large images, since applying it at larger scales has the same
computational cost. In [17] the semigroup equivariant models were applied to classification
and semantic segmentation of datasets of large images, achieving better results compared to
matched non-equivariant architectures. Yet, the role of scale-equivariance was not isolated, as
the performance of the models was not measured for inputs on scales unseen in the training
set. Later on, this approach was revisited by [10], where the Gaussian scale-space originally
used was generalized to other scale-spaces and the models were tested in experiments where
the networks are trained in one fixed scale and tested on unseen scales, albeit on synthetic or
simple datasets. In all these approaches, the authors either avoided pooling and upsampling
in their architectures, or used them but did not discuss their impact on scale equivariance.

While scale-equivariance has been a topic in the literature for some time, as far as we know
a scale-equivariant U-Net has not yet been proposed, contrary to the rotation-equivariance case
[1]. Moreover, the current benchmarks for scale-equivariance were either based on simple
datasets like MNIST or did not explicitly measure the equivariance in their segmentation or
classification experiments, by training the networks on one fixed scale and testing on unseen
scales. Here we propose semantic segmentation experiments based on natural data which
measure the equivariance of the predictions.

3 Semigroup Equivariant Convolutional Networks
In this work and following [17], image scalings are restricted to image downscalings, which
can be viewed as actions of a semigroup on images. As illustrated by Figure 1, we seek

1Code available at https://github.com/mateussangalli/ScaleEquivariantUNet
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equivariance with respect to both downscalings and translations. Hence, the network layers
are designed to be equivariant with respect to a semigroup combining both transformations.

3.1 Semigroup Equivariance
A semigroup, contrary to a group, can model non-invertible transformations, e.g. the down-
sampling operation in a discrete domain. In the following, (G, ·) denotes a discrete semigroup.

Let X be a set, a family of mappings (ϕg)g∈G from X to itself, is a semigroup action
on X if it is homomorphic to the semigroup, that is, if either ∀g,h ∈ G, ϕg ◦ϕh = ϕg·h (left
action), or ∀g,h ∈ G, ϕg ◦ϕh = ϕh·g (right action). In this paper we will consider in particular
the following right action, acting on F the set of functions from G to Rn.

∀u,g ∈ G,∀ f ∈ F , Ru( f )(g) = f (u ·g). (1)

Given two sets X and Y , a mapping H : X → Y is said equivariant with respect to G
if there are semigroup actions (ϕg)g∈G and (ψg)g∈G on X and Y respectively, such that
∀g ∈ G, H ◦ϕg = ψg ◦H. This definition gets more intuitive when X = Y is a set of images
and (ϕg)g∈G = (ψg)g∈G are scalings or translations, as illustrated in Figure 1.

3.2 Scale-cross-correlation
For γ > 1 an integer, let Sγ = {γn|n ∈ N}, endowed with the multiplication, the semigroup
representing discrete scalings of base γ . Then we consider the semigroup G = Sγ ×Z2 of
discrete scalings and translations, endowed with the internal operator “ · ”, defined by

∀k, l ∈ N,z,y ∈ Z2 (γk,z) · (γ l ,y) = (γk+l ,γky+ z). (2)

Following (1), the action of this semigroup on functions mapping Sγ ×Z2 to R is R
γk,z[ f ](γ

l ,y)=
f (γk+l ,γky+ z). In analogy to convolutions, which are linear and equivariant to translations, a
key step in equivariant CNNs is defining linear operators which are equivariant to some class
of operators. The semigroup cross-correlation, defined for an image f : G → R and a filter
h : G → R is a generalization of the convolution which is linear and equivariant to the action
Rg of a semigroup. When applied to the semigroup of scales and translations, we obtain the
scale-cross-correlation. Both were introduced in [17]. The scale-cross-correlation is written2

( f ⋆G h)(γk,z) = ∑
(γ l ,y)∈G

R
γk,z[ f ](γ

l ,y)h(γ l ,y) = ∑
l≥0

∑
y∈Z2

f (γk+l ,γky+ z)h(γ l ,y). (3)

This operator is suited for single channel images on G, but it can be easily extended to
multichannel images. Let the input f = ( f1, . . . , fn) ∈ (Rn)G be a signal with n channels.
Assuming the output has m channels, the filter is of the form h : G → Rn×m. We compute

the operator f ⋆G h at channel o ∈ {1, . . . ,m} as ( f ⋆G h)o :=
n
∑

c=1
( fc ⋆G hc,o). The resulting

map is equivariant to scalings and translations: (Rg f ⋆G h)o = Rg(( f ⋆G h)o). Note that
the composition of operators which commute with Rg still commutes with Rg, for which
concatenating scale-cross-correlation layers followed by pointwise activation functions and
batch normalization yields equivariant architectures.

2The equations in the case of a general semigroup can be found in Appendix A of the supplemental material.
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3.3 Lifting and Projection

The operators of the previous section are defined on the set of functions with the semigroup
as a domain, F = (Rn)G, but images input to networks are functions f : Z2 → Rn. In this
section we review the lifting and projections layers - operators which map images to functions
on the semigroup and vice-versa.

Lifting. A lifting operator Λ is used to map an input function f : Z2 → Rn into a function
Λ f : G → Rn. Once lifted to the semigroup space, linear equivariant operators can be applied
according to Eq. (3). As pointed out in [10], a sufficient condition to have equivariance of the
composition of the lifting followed by the semigroup cross-correlations, is that Λ◦R′

γk,z =

R
γk,z ◦Λ, where R′

γk,z is the re-scaling action for images on Z2: R′
γk,z[ f ](t) = f (γkt + z).

Whereas in [10] several liftings are explored, in this paper we set the lifting to the Gaussian
scale-space ΛG , like in [17]. For an image f : Z2 → R a point z ∈ Z2 and a scale level k ∈N,

ΛG( f )(γk,z) = ( f ∗G
γk)(z) (4)

where ∗ is the classic discrete convolution and G
γk the discrete Gaussian kernel with scale γk.

Projection. To project back into the image space, we apply a max-projection along
the scale dimension, defined by ∀z ∈ Z2 Π[ f ](z) = supk∈N{ f (γk,z)}. To be consistent with
the lifting, we would like to have R′

γk,z ◦Π = Π ◦ R
γk,z. Instead, we have R′

γk,zΠ f (y) =

supl∈N f (γ l ,γky+ z) and ΠR
γk,z f (y) = supl∈N f (γ l+k,γky+ z) = supl≥k f (γ l ,γky+ z) so that

R′
γk,zΠ f (y) = max{ΠR

γk,z f (y),max0≤l<k f (γ l ,γky+ z)}. The previous expression will be
equivariant if the scale where the maximum is attained is smaller than k, but in general we can
only hope for approximate equivariance for small enough k. The approximate equivariance
will be empirically verified in experiments in Section 5. Note that other projections (e.g. sum
or average) have the same flaw, as this is intrinsic to the semigroup-equivariant approach,
even though it was omitted previously in the literature.

4 Scale-Equivariant U-Net

Recall that the U-Net [9], illustrated in Figure 3, is a CNN architecture for semantic seg-
mentation based on an auto-encoder structure with skip connections linking the encoder and
decoder. As such, it has four main components: convolution blocks, pooling, upsampling and
skip connections. In this section we aim to propose the Scale-Equivariant U-Net (SEU-Net),
in order to have a U-Net with increased generalization capacity.

In the framework of the previous section, a network can be written as Γ = Π ◦Σ ◦Λ,
where Λ and Π are the lifting and projection respectively, and Σ is the core part of the
network mapping the lifted space to itself. We already saw that Λ◦R′

γk,z = R
γk,z ◦Λ and we

assume R′
γk,z ◦Π ≈ Π◦R

γk,z. Hence, to build a (approximately) scale-equivariant network,
it is sufficient to have Σ ◦R

γk,z = R
γk,z ◦Σ. In particular, a way to render the U-Net scale-

equivariant is to design scale-equivariant versions of its components in Σ. Convolutions
are already rendered equivariant by scale-cross-correlations, and pointwise-non-linearities,
batch-normalization and skip connections are equivariant as is. The rest of this section is
dedicated to examining the remaining components: subsampling and upsampling.
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Figure 3: Illustration of the SEU-Net architecture. We parametrize it by the height (i.e.
number of subsamplings/upsamplings set to four in this example) and number of filters C in
the first layer (after pooling we double the number of filters and after subsampling we halve
it). The values H,W represent the height, width of the inputs images, S is the number of scales
in the lifting and Cin, are the number of channels in the input image or convolutional filters
and Cout is the number of classes. Two convolutions are performed between subsamplings
and between upsamplings. Feature maps connected by skip connections have the same spatial
dimensions.

4.1 Subsampling
Classical pooling operators naively applied scale by scale do not result in scale-equivariant
poolings in the lifting space. For example, the max-pooling MP[ f ](x) = maxy∈N f (rx+ y)
with strides r ∈ N and neighborhood N ⊆ Z2 (usually a r× r square). Its naive extension to
the lifted space MP′[ f ](γk,x) = MP[ f (γk, ·)](x) ∀k ∈ N does not commute with R

γk,x.
Strided convolutions however, generalize well to this scenario, written as the subsampling

operator Dt [ f ](γk,x) = f (γk, tx) following a scale-cross-correlation. We can verify that it
is scale-equivariant: Dt [Rγk,x f ](γ l ,y) = (R

γk,x f )(γ l , ty) = f (γ l+k,γkty) = Dt [ f ](γ l+k,γky) =
R

γk,x[Dt f ](γ l ,y). We use strides as the subsampling in our networks, with a stride of t = 2.

4.2 Upsampling
Upsampling blocks are a well established part of modern neural network architectures for
segmentation and other tasks. In order to extend upsampling to a scale-equivariant setting, we
look at the case where f is defined on a continuous domain. In that case, the downsampling
D

γ l has an inverse U
γ l which is the natural upsampling.

In the discrete case the problem becomes more complicated as downscaling is not in-
vertible, but for k, l ∈ N we can define an upsampling U

γ l as an operator satisfying ∀x ∈ Z2

U
γk [ f ](γ l ,γkx) = f (γ l ,x) and U

γ lk =U
γk ◦U

γ l . (5)

With this, we have D
γk ◦U

γk = id. For all k, U
γk( f ) values are only restricted in the points
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y ∈ kZ2 = {kx|x ∈ Z2}, and the values on the other pixels can be defined in several ways
(e.g. copies, interpolation) as long as it satisfies (5). Now, if U

γ l Rγk,x f = R
γk,γ lxUγ l f for any

f then Σ ◦R
γk,x = R

γk,x ◦Σ. Indeed let ψi = Li · · ·Dγ l L1, i = 1, . . . ,m denote the part of a
SEU-Net of height m before the i-th downsampling block, where L j, j = 1, . . . ,m, are blocks
that commute with R

γk,x(constructed by scale-cross-correlations, pointwise activations and
batch normalization). Denote φm = Lm+1ψm and φi = LiC(U

γ l φi+1,ψi), i = m, . . . ,1 where
C denotes concatenation. With the above hypothesis, we have φiRγk,x f = R

γk,γ lixφi f . In
particular, R

γk,xφ0 f = φ0R
γk,x f , and we notice that φ0 is precisely Σ.

The sufficient condition U
γ l Rγk,x f = R

γk,γ lxUγ l f is not verified in general (see Appendix
B of the supplementary material), but Proposition 1 introduces a setting where it does.

Proposition 1. For N ∈N∗ and i ∈ {1, . . . ,N}, let Ui = {U
γni+l fi|l ∈N}, where each fi : G →

Rn is a function on G and each ni an integer. Let n0 ≤ min{ni|i = 1, . . . ,N} and U =
N⋃

i=1
Ui.

Then for all f ∈ U , and k, l ∈ N such that k− l ≤ n0, we have3 U
γ l Rγk,x f = R

γk,γ lxUγ l f .

This property states that upsampling behaves as an equivariant operator as long as the
input image is an upsampling of some image in a base scale. It can be interpreted as saying
that the downscaling should not destroy information of the images in U . We model this by
constraining the scaling factors of the downscaling actions and assuming that the objects of
interest in an image are sufficiently big. We would like to point out that this hypothesis is
never verified but reasonable for most of the datasets for semantic segmentation.

Before moving on to the experimental part, let us sum up the theoretical properties of
a SEU-Net Γ = Π ◦Σ ◦Λ. By our construction we can hope for an approximated scale-
equivariance Γ◦R′

γk,z ≈ R′
γk,z ◦Γ. Two approximations prevent from exact equivariance: The

approximated equivariance of the projection operator Π, which is intrinsic to the lifting
approach, and the assumption to guarantee an equivariant upsampling, which is never verified
in practice. We will see in our experiments that the SEU-Net shows a high degree of scale-
equivariance despite these approximations. Each of these approximations is intrinsic to the
problem. If the problem was formulated in a continuous domain Sγ ×R2 upsampling would
be theoretically equivariant, but its implementation would have the same problems.

5 Experiments
In this section we test the proposed SEU-Net in two segmentation tasks where we evaluate its
generalization to unseen scales. We train the SEU-net on a set where objects have roughly
the same scale and test it on a wide range of scales. For these experiments we use a scale
base of γ = 2, downsampling D2 and upsampling U2 computed by bilinear interpolation.
Quantitative results will be measured using Intersection over Union (IoU) and consistency.
We define consistency as follows: given a segmentation neural network φ , the consistency is
the probability of assigning the same label to a pixel after it has been transformed, formally
Cons(φ ,s) = P

(
φ(Rs,0[ f ])(x) = Rs,0[φ( f )](x)

)
.

We compare the SEU-Net to U-Net and to the SResNet [17], a scale-equivariant residual
architecture which applies subsampling but no upsampling inside the equivariant pipeline,
i.e. it only applies an upsampling after the projection layer. Hence, it does not benefit from

3For a proof, see Appendix C of the supplementary material.
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the features that made U-Net more suitable for segmentation, namely the skip connections at
several upsampling stages.

Scale Dropout. In order to produce more robust results with respect to scale changes
we propose the use of Scale Dropout before the projection layers. Given a feature map
f : Sγ ×Z2 →Rn, we compute its scale dropout of rate p ∈ [0, 1] as ScaleDropoutp( f )(s,x) =
X(s) f (s,x) where X(s) is a Bernoulli variable of parameter p, i.e. P

(
X(s) = 1

)
= 1− p and

P
(
X(s) = 0

)
= p. In our experiments we use values p = 0 (no dropout) and p = 0.25.

5.1 Oxford-IIIT Pet Dataset
The Oxford-IIIT Pet 4 dataset [8] consists of pictures containing cats and dogs. The relevant
labeling for this paper, the trimaps, is the segmentation of the images into three classes: the
animal, the background and the boundaries of the animal. In Figure 5(a) and (b) we see an
example of an image and its corresponding ground truth. The dataset was loaded from the
TensorFlow package5, where it is divided into 3680 training samples and 3669 test samples.
To make the validation set we removed 200 test samples. During training and testing images
are resized to 224×224 pixels. We define multiple test sets by re-scaling the original test set
by s ∈ {2

i
2 |i ∈ {−4,−3, . . . ,4}}. We used bilinear interpolation to up-scale images.

Both the U-Net and SEU-Net have height four and contain sixteen filters in the first layer
and use 3×3 filters. The SEU-Net truncates at four scales, and filters have depth one in the
scales dimension (their values is different from zero in one scale value). The networks are
trained using the Adam [5] optimizer with categorical cross-entropy loss. Training the U-Net,
SResNet and SEU-Net takes approximately 24, 73, and 97 seconds per epoch respectively, on
a Tesla P100-SXM2-16Gb GPU.

Comparison with data augmentation. We also performed scale jittering in the U-Net
to compare the effect of the equivariant network with the effect of data augmentation. Scale
jittering is performed by rescaling the image by a randomly chosen scale α and either random
cropping or padding to the original image. We trained a U-Net with scale jittering in the
interval [ 1

4 ,4], equal to the interval of test scales.
Results. The overall results in terms of the IoU are shown in Figure 4. Firstly we notice

that the SEU-Net increases performance compared to both SResNet and U-Net. SResNet,
however, does not consistently generalize better than the U-Net. Dropout improves the quality
of SEU-Net, particularly for more extreme scales, indeed, for larger scales the augmented
U-Net has a better IoU than the SEU-Net without scale dropout, but not than the one with
scale dropout. The augmented U-Net loses performance scale 1, it would probably need to be
larger to retain the same performance. We show examples of the predictions of the U-Net and
SEU-Net in Figure 5.

5.2 Cell Segmentation
We also evaluate the models in a medical image segmentation dataset, namely the DIC-C2DH-
HeLa dataset [14] of HeLa cells on a flat glass recorded by differential interference contrast
(DIC). We used 83 images for train/validation and 83 for testing. Figure 7 (a) and (b) shows
an example from the test set with its labels at different scales. Models are trained with the
AdamW optimizer [7]. Like in the previous experiment, we first train the models in the

4https://www.robots.ox.ac.uk/~vgg/data/pets/, CC BY-SA 4.0 license
5https://www.tensorflow.org/datasets/catalog/oxford_iiit_pet
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(b) Consistency
Figure 4: Overall results in terms of IoU and Consistency for each scale of the Pet dataset.

(a) Image (b) Ground Truth (c) U-Net (d) SEU-Net
Figure 5: Sample test image at different scales and ground truth from the Oxford-IIIT Pet
dataset, along with the U-Net and SEU-Net predictions. The scales present are 0.25,0.5,1
and 2 times the training scale.

training set and test in the test set re-scaled by different values. We also perform scale jittering,
but now for both U-Net and SEU-Net. For U-Net we trained models with scale jittering with
ranges 4 (α is chosen each step from the interval [ 1

4 ,4]) and 1.5 (α is chosen from the interval
[ 2

3 ,
3
2 ]) and for SEU-Net we used only the range 1.5 jittering.

Results. Figure 6 (a) shows the IoU of different models on the re-scaled test sets. Figure 7
shows some segmentation examples. Again, the SEU-Net outperforms the U-Net. The
poor results of the SResNet for smaller scales is possibly due to the cell images containing
more high-frequency information, compared to the pets images. In contrast to the previous
experiment, dropout did not seem to significantly increase performance of the SEU-Net,
neither in the train scale nor the test scales. Moreover the SResNet results were greatly
decreased due to dropout. The scale jittering with range 4 has a generally detrimental effect
to the U-Net at the base scale. This is likely a result of the agumented dataset being more
difficult to segment than the original and not being representative of the dataset at base scale.
The gain in generalization is only better than the SEU-Net for the smallest scales. The jittering
with range 1.5 does not have a very noticeable effect. On the other hand the SEU-Net with
1.5 jittering has a noticeable gain in generalization to larger scales.
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(a) IoU per scale.
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(b) Augmentation comparison.
Figure 6: IoUs of the cell segmentation experiment with comparisons with U-Net, SResNet
and data augmentation. U-Net (aug. 4) refers to the U-Net trained with scale jittering with
range 4 and U-Net (aug. 1.5) refers to the U-Net trained with jittering with range 1.5. The
same for SEU-Net (aug. 1.5).

(a) Image (b) Ground Truth (c) U-Net (d) SEU-Net
Figure 7: Predictions from DIC-HeLa at different scales, namely scales 0.5, 1 and 2. Although
the U-Net suffers from the scale change, especially the change to a larger scale, the SEU-Net
can still capture the overall structure of the cells.

6 Conclusions and Future Work

In this paper we revisited the framework of scale semigroup-equivariant neural networks
and applied it to the definition of a Scale Equivariant U-Net for semantic segmentation.
Experimental results show that the SEU-Net can greatly improve the generalization to new
scales and even the performance in the training scale. Moreover, the results lead us to
conjecture that the U-Net with scale jittering would need to have more parameters to have
a good performance in all the range of scales, while the SEU-Net achieves good results
without increasing its size. The results suggest that implementing that the improvement comes
not only from the scale-equivariant cross-correlations, but also from the SEU-Net global
architecture and applying the pooling operators inside the equivariant pipeline. The proposed
scale dropout was also shown to have the potential to increase scale-equivariant models’
performance. In future works it would be interesting to study an equivariant regularization
term such as in [12] in addition to the scale-dropout.
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