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Abstract

The U-Net [2] is not scale-equivariant in general. The scale-cross-correlation [4] is a linear
scale-equivariant operator that generalizes the convolution for feature maps defined on a semigroup of
scales and translations. In this work we propose the Scale-Equivariant U-Net (SEU-Net) which introduces
scale-equivariance to the U-Net by using scale-cross-correlations instead of the convolution and by
studying the equivariance of the pooling and upsampling operators that are used in the U-Net.

Scale-Equivariance
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Let Sγ = {γ0, γ1, γ2, . . . } with real multiplication be a semigroup of scales and Sγ × Z2 a semigroup of
scales and translations. Given f : Z2 → Rn and f̄ : Sγ × Z2 → Rn we define the actions

R′
s,xf (y) = f (sy + x) Rs,xf (y) = f (st, sy + x) (1)
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Images are lifted by a scale-space operator Λ to a semigroup of scales and translations

In that space we perform scale-cross-correlations, pooling, upsampling and other operations used in the
U-Net

The feature maps are projected back to images using the projection Π

Equivariance of Subsampling and Upsampling

Subsampling and Upsampling must be scale-equivariant in order for the network to be scale-equivariant

Subsampling by strided scale-cross-correlations is scale-equivariant

We denote by Ut an upsampling by a factor of t, i.e. an operator such that Ut(f )(tx) = f (x) and
Ut ◦ Us = Ut+s.

Upsamplings are not scale-equivariant under some conditions it behaves as an equivariant operator

Partial Equivariance of upsampling

For N ∈ N∗ and i ∈ {1, . . . , N} let Ui = {U
γni+l

fi|l ∈ N}, where each fi : G → Rn is a function on G

and each ni an integer. Let n0 ≤ min{ni|i = 1, . . . , N} and U =
N⋃
i=1

Ui. Then for all f ∈ U , and

k, l ∈ N such that k − l ≤ n0, we have UγlRγk,xf = Rγk,γlxUγlf .

Oxford-IIIT Pet [1]

(a) Image (b) Ground Truth (c) U-Net (d) SEU-Net
Figure 1. Sample test image at different scales and ground truth from the Oxford-IIIT Pet dataset, along with the U-Net and
SEU-Net predictions. The scales present are 0.25, 0.5, 1 and 2 times the training scale.
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(a) IoU
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(b) Consistency
Figure 2. Overall results in terms of IoU and Consistency for each scale of the Pet dataset. Consistency is defined as the
probability that the re-scaled samples are classfied in the same class as the original.

The code for the experimental section is available
at https://github.com/mateussangalli/

ScaleEquivariantUNet

DIC-HeLa [3]

(a) Image (b) Ground truth (c) U-Net (d) SEU-Net
Figure 3. Predictions from DIC-HeLa at different scales, namely scales 0.5, 1 and 2.
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(a) IoU per scale.
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(b) Augmentation comparison.
Figure 4. IoUs of the cell segmentation experiment with comparisons with U-Net, SResNet. Aug. 4 refers to the U-Net trained
with scale jittering with range 4 and aug. 1.5 with range 1.5.

Conclusions

Generalization to unseen scales of the SEU-Net is improved compared to the U-Net, even when the
latter is trained with scale-jittering to simulate the test scales.

The SEU-Net also improves generalization compared to the SResNet [4], which uses
scale-cross-correlations but does not perform upsampling operators inside the equivariant pipeline.

It would be interesting apply the SEU-Net with a scale-convolution layer that supports a non-integer
scale discretization.
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