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A Semigroup cross-correlation

Let F = RY denote the set of functions mapping G to R. Bearing in mind the final purpose
of defining equivariant CNN layers, we focus on linear operators on F. Let the semigroup
right action (R, ),ec on F, defined by

Vu,g € G,Vf e F, Ru(f)(g) :f(u'g)' (D

Then for any & € F, the linear operator defined by

Vue G, H(f)(u)=(frch) =Y Ru(f)(g)h(g) 2

geG

is equivariant to the semigroup action (Ry)ucg, as H(R,(f)) = R,(H(f)). This class of
semigroup equivariant linear operators is the semigroup cross-correlation proposed in [3]
as the key element to define scale-equivariant convolutional layers. Note that when G is the
group of image translations (groups are special semigroups), (2) corresponds to the classic
discrete convolution with the reversed filter h*(g) = h(g~'). We use the notation f g h
remarking however that this operation is not symmetrical in f and & even when the law - on
G is commutative. Also, contrary to the group case, we do not have the property that every
linear and equivariant operator can be written as a semigroup-cross-correlation.

B Different Pooling Operators

Besides the strided scale-crosscorrelations we used, we can define another class of pooling
operators, inspired by classical max-pooling. Let us place ourselves in a slightly different
case of pooling a function in a continuous domain f : S x R? — R, with S x R? acting on it

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.


Citation
Citation
{Worrall and Welling} 2019


2 SANGALLI ET AL: SCALE-EQUIVARIANT U-NET

0.8

0.74

0.6 1 e

loU

—— UNet
—— SEUNet (Quadratic)
SEUNet (Strides)

—— UNet
—— SEUNet (Quadratic)
SEUNet (Strides)
SEUNet (MaxPool)
—— SResNet
----- SEUNet (Dropout, Quadratic)
SEUNet (Dropout, Strides)

Consistency

051 ¥

SEUNet (MaxPool)

—— SResNet

----- SEUNet (Dropout, Quadratic)
SEUNet (Dropout, Strides)

0.754

0.4 4

SEUNet (Dropout, MaxPool) SEUNet (Dropout, MaxPool)

PN I SResNet (Dropout) 0651 F s SResNet (Dropout)
0.2 0.4 0.5 0.7 1.0 1.4 2.0 2.8 4.0 0‘.2 0‘.4 0‘5 0.‘7 1.‘0 114 2‘.0 2‘8 4.‘0
scale scale
(a) IoU (b) Consistency

Figure 1: Overall results in terms of IoU and Consistency for each scale of the Pet dataset.
The SEU-Net has been computed with different pooling functions.

by R%Zf(}/‘,x) = (Y, ¥x+2), k1 €N, x € R?, 7 € Z*. We define the pooling of f as an
operator F followed by a downsampling D, [f] (Y*,2) = (¥, 72)

Plf] = DyFf. 3)

If F commutes with R ., then so does P. We consider three pooling functions: Fg = id
(strides) and two dilation scale-spaces [1]:

¢ The max-pooling of scale-semigroup-valued images is given by a re-scaled max-pooling

Foax[f](¥,2) = sup {f(z—)} )

YEN XNy
where Ny = {¥*x|x € N} and N is for example a ¥/-sided square in R2.

* The quadratic dilation (quadpool) scale-space is a morphological counterpart to the
Gaussian scale-space [2] defined by

2
Fquad[f](ykvz): sup {f(z—y)— HyH }7 Q)

2k
yeR? cy
where ¢ > 0 is some constant.

In contrast to the strided scale-cross-correlations given by Fiqy, the functions Fy,x and
Fyuad are scale-equivariant only in this continuous setting, their discretized versions are not
actually equivariant. Nonetheless, a network employing scale-cross-correlations and these
poolings would be equivariant when applied to signals in the domain S x R

In Figure 1 we extend the experiments from Section 5.2. Using different pooling functions
did not improve the performance of the SEU-Net compared to its performance using strided
scale-cross-correlations.

C Non-equivariance of the upsampling

In this section we show that UpRy . f# Ry Uy f for at least one lifted image f, one couple
of integers (k,!) and a point x € Z. Note that U, is an upsampling defined in the associated
paper.
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Figure 2: Example illustrating the problem with upsampling in a scale-equivariant architecture.
We have images f; and f, such that when both are downsampled and then upsampled they
yield the same result, but if both are upsampled and then downsampled they yield different
results.

Given any k € N, take [ = k, x = (0,0) and any two lifted images f; and f, that coincide
on certain points,

(Saj/(y):fZ(sﬁ/(y) vsesay€Z27

and are different elsewhere, as illustrated in Figure 2. Let us show that UpRy . fi # Ry Uy fi
either for i = 1 or i = 2 or both. The set of points where f; and f, coincide implies in particular
that R o f1 = Rk o f2. Then we have

Ry Uy f1 7 Roje Ui f2,
as Ry gUp fi - (s,9) = fi(¥*s,y), and f1(¥*s,y) # f2(¥*s,y) for y ¢ kZ?. Note that Ry gUnk
is nothing else than an upsampling followed by a downsampling, as in Figure 2.

Since, on the other hand, Ry« o fi = Ry o f2, we get

UpRyi o f1 = UpRop o f>.

Hence, either Ry Uy f1 # UiRi0.f1 or Ry oUk f> # UiRy0 f> or both, proving our point.

D Proof of Proposition 1

Proof. First, consider k < m

Ryk,()kokf(/ypay) = (Uykf)(J/cYp»fy)
= f(Y.y)

80 Ry gUyn f(¥7,) = Upn-i (Y77, ).
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Now, let f = Uyn fi € F, k <min{n;|i =1,...,N} < m, we have

UyRy o f(Y",y) = UyRyjc Uyn fi(V",y)
= UyRi Ry oUpn fi(V",y)
= R nUyUppni fi(Y" "1 y)
= Uym*kai(VHPaY‘i‘ )

and, on the other hand

Ry Uy f(Y7.y) = Ry (, UyUpn fi(¥,)
=Ri R oUpns1 fi(Y7,)
=Ry Uy fi(7"5,)
=Upnser /(Y7 y+10)
=UpRy  f(1".y),

implying UyR e f= Ry Uy f. Repeated application gives us the desired result. O

E Details of the Experiments
E.1 Oxford IIIT Pet

All models, except for the augmented U-Net are trained for 300 epochs. The augmented U-Net
is trained for four times as many epochs. To train all models we apply data augmentation
consisting of, rotations by a uniformly sampled angles in [—10°,10°], linear contrast changes
by values in the range [0.9, 1.1], random horizontal flipping and random cropping to size
112 x 112. Learning rate starts at 103 an is reduced by 10 when the validation loss does not
improve for 30 epochs. We use a batch size of 8.

E.2 DIC-C2DH-HeLa

All models, except for the U-Net with jittering 4 are trained for 200 epochs. The augmented U-
Net with jittering 4 is trained for four times as many epochs. To train all models we apply data
augmentation consisting of, rotations by a uniformly sampled angles in [—10°,10°], linear
contrast changes by values in the range [0.9, 1.1], random horizontal and vertical flipping and
elastic transformations. Learning rate starts at 1073, weight decay starts at 10~* and both are
reduced by exponential decay such that they are divided by 10 every 100 epochs (the decay
stops at epoch 300 for the U-Net with size 4 jittering). We use a batch size of 1.

F More Examples of Predictions

In Figure 3 we can see some more examples of predictions from the Oxford Pet dataset, par-
ticularly when the U-Net struggles to generalize to new scales. Similarly Figure 4 showcases
some extra examples from the experiment from the DIC-HeLa experiment.
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(a) Image (b) Ground Truth (c) U-Net (d) SEU-Net
Figure 3: Sample test images at different scales and ground truth from the Oxford-IIIT Pet
dataset, along with the U-Net and SEU-Net predictions. The scales present are 0.25,0.5, 1
and 2 times the training scale.
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(a) Image (b) Ground Truth (c) U-Net (d) SEU-Net
Figure 4: Predictions from DIC-HeLa at different scales, namely scales 0.5, 1 and 2.
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