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A Semigroup cross-correlation
Let F = RG denote the set of functions mapping G to R. Bearing in mind the final purpose
of defining equivariant CNN layers, we focus on linear operators on F . Let the semigroup
right action (Ru)u∈G on F , defined by

∀u,g ∈ G,∀ f ∈ F , Ru( f )(g) = f (u ·g). (1)

Then for any h ∈ F , the linear operator defined by

∀u ∈ G, H( f )(u) = ( f ⋆G h) = ∑
g∈G

Ru( f )(g)h(g) (2)

is equivariant to the semigroup action (Ru)u∈G, as H(Ru( f )) = Ru(H( f )). This class of
semigroup equivariant linear operators is the semigroup cross-correlation proposed in [3]
as the key element to define scale-equivariant convolutional layers. Note that when G is the
group of image translations (groups are special semigroups), (2) corresponds to the classic
discrete convolution with the reversed filter h∗(g) = h(g−1). We use the notation f ⋆G h
remarking however that this operation is not symmetrical in f and h even when the law · on
G is commutative. Also, contrary to the group case, we do not have the property that every
linear and equivariant operator can be written as a semigroup-cross-correlation.

B Different Pooling Operators
Besides the strided scale-crosscorrelations we used, we can define another class of pooling
operators, inspired by classical max-pooling. Let us place ourselves in a slightly different
case of pooling a function in a continuous domain f : S ×R2 → R, with S ×R2 acting on it
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(a) IoU
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(b) Consistency
Figure 1: Overall results in terms of IoU and Consistency for each scale of the Pet dataset.
The SEU-Net has been computed with different pooling functions.

by R
γ l ,z f (γk,x) = f (γk+l ,γ lx+ z), k, l ∈ N, x ∈ R2, z ∈ Z2. We define the pooling of f as an

operator F followed by a downsampling D
γ l [ f ](γk,z) = f (γk,γ lz)

P[ f ] = D
γ l F f . (3)

If F commutes with R
γk,x, then so does P. We consider three pooling functions: Fid = id

(strides) and two dilation scale-spaces [1]:

• The max-pooling of scale-semigroup-valued images is given by a re-scaled max-pooling

Fmax[ f ](γk,z) = sup
y∈Nk×Nk

{ f (z− y)} (4)

where Nk = {γkx|x ∈ N} and N is for example a γ l-sided square in R2.

• The quadratic dilation (quadpool) scale-space is a morphological counterpart to the
Gaussian scale-space [2] defined by

Fquad[ f ](γk,z) = sup
y∈R2

{
f (z− y)− ∥y∥2

cγ2k

}
, (5)

where c > 0 is some constant.

In contrast to the strided scale-cross-correlations given by Fid, the functions Fmax and
Fquad are scale-equivariant only in this continuous setting, their discretized versions are not
actually equivariant. Nonetheless, a network employing scale-cross-correlations and these
poolings would be equivariant when applied to signals in the domain S ×R2.

In Figure 1 we extend the experiments from Section 5.2. Using different pooling functions
did not improve the performance of the SEU-Net compared to its performance using strided
scale-cross-correlations.

C Non-equivariance of the upsampling
In this section we show that U

γ l Rγk,x f ̸= R
γk,γ lxUγ l f for at least one lifted image f , one couple

of integers (k, l) and a point x ∈ Z2. Note that U
γ l is an upsampling defined in the associated

paper.
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Figure 2: Example illustrating the problem with upsampling in a scale-equivariant architecture.
We have images f1 and f2 such that when both are downsampled and then upsampled they
yield the same result, but if both are upsampled and then downsampled they yield different
results.

Given any k ∈ N, take l = k, x = (0,0) and any two lifted images f1 and f2 that coincide
on certain points,

f1(s,γky) = f2(s,γky) ∀s ∈ S,y ∈ Z2,

and are different elsewhere, as illustrated in Figure 2. Let us show that U
γ l Rγk,x fi ̸=R

γk,γ lxUγ l fi
either for i= 1 or i= 2 or both. The set of points where f1 and f2 coincide implies in particular
that R

γk,0 f1 = R
γk,0 f2. Then we have

R
γk,0U

γk f1 ̸= R
γk,0U

γk f2,

as R
γk,0U

γk fi : (s,y) 7→ fi(γ
ks,y), and f1(γ

ks,y) ̸= f2(γ
ks,y) for y /∈ kZ2. Note that R

γk,0U
γk

is nothing else than an upsampling followed by a downsampling, as in Figure 2.
Since, on the other hand, R

γk,0 f1 = R
γk,0 f2, we get

U
γk R

γk,0 f1 =U
γk R

γk,0 f2.

Hence, either Rk,0Uk f1 ̸=UkRk,0 f1 or Rk,0Uk f2 ̸=UkRk,0 f2 or both, proving our point.

D Proof of Proposition 1

Proof. First, consider k < m

R
γk,0 ◦U

γk f (γ p,y) = (U
γk f )(γk

γ
p,γky)

= f (γk
γ

p,y)

so R
γk,0Uγm f (γ p,y) =U

γm−k f (γ p+m,y).
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Now, let f =Uγm fi ∈ F , k ≤ min{ni|i = 1, . . . ,N} ≤ m, we have

Uγ R
γk,x f (γ p,y) =Uγ R

γk,xUγm fi(γ
p,y)

=Uγ R1,xR
γk,0Uγm fi(γ

p,y)

= R1,γxUγU
γm−k fi(γ

p+mr,y)

=U
γm−k+1 fi(γ

m+p,y+ γx)

and, on the other hand

R
γk,γxUγ f (γ p,y) = R

γk,γxUγUγm fi(γ
p,y)

= R1,γxR
γk,0Uγm+1 fi(γ

p,y)

= R1,γxUγm−k+1 fi(γ
p+k,y)

=U
γm−k+1 fi(γ

p+m,y+ γx)

=Uγ R
γk,x f (γ p,y),

implying Uγ R
γk,x f = R

γk,γxUγ f . Repeated application gives us the desired result.

E Details of the Experiments

E.1 Oxford IIIT Pet
All models, except for the augmented U-Net are trained for 300 epochs. The augmented U-Net
is trained for four times as many epochs. To train all models we apply data augmentation
consisting of, rotations by a uniformly sampled angles in [−10◦,10◦], linear contrast changes
by values in the range [0.9,1.1], random horizontal flipping and random cropping to size
112×112. Learning rate starts at 10−3 an is reduced by 10 when the validation loss does not
improve for 30 epochs. We use a batch size of 8.

E.2 DIC-C2DH-HeLa
All models, except for the U-Net with jittering 4 are trained for 200 epochs. The augmented U-
Net with jittering 4 is trained for four times as many epochs. To train all models we apply data
augmentation consisting of, rotations by a uniformly sampled angles in [−10◦,10◦], linear
contrast changes by values in the range [0.9,1.1], random horizontal and vertical flipping and
elastic transformations. Learning rate starts at 10−3, weight decay starts at 10−4 and both are
reduced by exponential decay such that they are divided by 10 every 100 epochs (the decay
stops at epoch 300 for the U-Net with size 4 jittering). We use a batch size of 1.

F More Examples of Predictions
In Figure 3 we can see some more examples of predictions from the Oxford Pet dataset, par-
ticularly when the U-Net struggles to generalize to new scales. Similarly Figure 4 showcases
some extra examples from the experiment from the DIC-HeLa experiment.
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(a) Image (b) Ground Truth (c) U-Net (d) SEU-Net
Figure 3: Sample test images at different scales and ground truth from the Oxford-IIIT Pet
dataset, along with the U-Net and SEU-Net predictions. The scales present are 0.25,0.5,1
and 2 times the training scale.
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(a) Image (b) Ground Truth (c) U-Net (d) SEU-Net
Figure 4: Predictions from DIC-HeLa at different scales, namely scales 0.5, 1 and 2.
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