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Abstract

Scene text recognition (STR) is to recognize text appearing in images. Current state-
of-the-art STR methods usually adopt a multi-stage framework which uses a rectifier to
iteratively rectify errors from previous stage. However, the rectifiers of those models
are not proficient in addressing the misalignment problem. To alleviate this problem,
we proposed a novel network named Parallel and Robust Text Rectifier (PRTR), which
consists of a bi-directional position attention initial decoder and a sequence of stacked
Robust Visual Semantic Rectifiers (RVSRs). In essence, PRTR is creatively designed as
a coarse-to-fine architecture that exploits a sequence of rectifiers for repeatedly refining
the prediction in a stage-wise manner. RVSR is a core component in the proposed model
which comprises two key modules, Dual-Path Semantic Alignment (DPSA) module and
Visual-Linguistic Alignment (VLA). DPSA can rectify the linguistic misalignment is-
sues via the global semantic features that are derived from the recognized characters as
a whole, while VLA re-aligns the linguistic features with visual features by an atten-
tion model to avoid the overfitting of linguistic features. All parts of PRTR are non-
autoregressive (parallel), and its RVSR re-aligns its output according to the linguistic
features and the visual features, so it is robust to the mis-aligned error. Extensive experi-
ments on mainstream benchmarks demonstrate that the proposed model can alleviate the
misalignment problem to a large extent and outperformed state-of-the-art models.

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
† : Equal contribution; *: Corresponding author.
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Figure 1: Three examples with intermediate predictions. Texts in green dash boxes and blue
dash boxes represent the results of ABINet [2] and PRTR (ours) respectively. In each box,
the first row is the initial prediction, the second row is the prediction of the rectifier, and the
last one is the ground-truth. “_” is a placeholder, characters in red represent aligned errors,
and characters in yellow correspond to misaligned errors.

1 Introduction

Scene text recognition (STR) which aims to recognize text from natural images, is an impor-
tant task in computer vision (CV) and natural language processing (NLP), and benefits for
many downstream tasks, such as automatic driving, travel translator etc. Currently, main-
stream models for STR are based on attention mechanism [11, 12, 22, 25, 26, 28], which
mainly focus on how to guide the visual features to attend the corresponding regions of
characters. However, it is challenging for accurately identifying each character from scene
images, due to uncontrolled issues like illumination, distortion or obstacle.

There exist a bunch of methods [1, 2, 17, 27] to model the linguistic information to enrich
the global context for character recognition. For example, [27] proposed a semantic reason-
ing network to capture the global semantic context via a transformer-based module. Fang et
al. [2] proposed a language model named ABINet to estimate the probability distribution of
characters for progressively correcting the prediction. Similarly, [1] proposed a multi-stage
prediction paradigm with joint visual-semantic reasoning (JVSR) to make full use of visual
and linguistic clues for progressively refining recognized letters. We divide these methods
into two categories according to whether the prediction sequence is refined: One-stage STR
methods [10, 11, 12, 13, 20, 21, 22, 28] and Multi-stage STR methods[1, 2, 27]. One-
stage STR methods directly predict the final text, while multi-stage STR methods contain a
rectifier module to refine previous predictions.

Although most of previous frameworks are effective in capturing the global semantic
context with a rectifier to refine the last prediction, they still easily fail to achieve high Recog-
nition accuracy for STR tasks due to following limitations in the rectifying process: (i) those
model are prone to recognize test characters as existing words with their language models,
for example, as shown in Fig. 1(a), ABINet turns the correct prediction of the initial decoder
into “magic”; (ii) it is not effective enough for those models to solve the misaligned prob-
lem which we focus on in this work, as shown in Fig. 1(b) and (c). Here “aligned error” is
defined as the error that if the selection of operations contains only substitution during the
calculation of the minimum edit distance of the incorrect prediction and the ground-truth,
and other prediction errors except aligned errors are defined as “misaligned error”. For ex-
ample, assume the ground-truth is “aeroplane" and the prediction is “aenoplane", then the
error is an aligned error, while if the prediction is “aeoplane", it is a misaligned error. As
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Error rectified (%)
Error type aligned misaligned
ABINet 44.5 3.6

PRTR (Ours) 44.2 17.4
Table 1: Quantitative analysis of ABINet2and our method on the performance of the rectifier.
For each method, we categorize the errors of the initial decoder on the test datasets into
misaligned and aligned errors, and summaries the ratio of errors corrected by the rectifier.
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Figure 2: Overall architecture of PRTR. OPA, DPSA and VLA denote online probability
augmentation, dual-path semantic alignment and visual-linguistic alignment respectively.
The right part demonstrates the structure of DPSA and VLA.

listed in Tab. 1, ABINet is able to rectify 44.5% of the aligned errors from the initial de-
coder, but can only rectify 3.6% of the misaligned errors. More efficient and robust models
are required to promote recognition accuracy for misaligned errors.

To mitigate the misalignment issues we propose a novel framework called Parallel and
Robust Text Rectifier (PRTR) which mainly consists of an initial encoder and a sequence of
Robust Visual-Semantic Rectifiers (RVSRs). The novelty of PRTR to solve this misalign-
ment problem is to rectify the prediction error in a stage-by-stage manner, which is imple-
mented by imposing a sequence of RVSRs on the output of the initial encoder. Since RVSR
comprises two alignment modules, namely dual-path semantic alignment (DPSA) module
and a visual-linguistic alignment (VLA) module, which aims to align semantic information
with linguistic features, and linguistic features with visual features respectively, it can obvi-
ously alleviate misalignment errors. We also propose an online probability augment (OPA)
module to strengthen the error correction ability of RVSR. Hence, our RVSR is robust to
error propagation derived from the primitive prediction of the initial decoder. We summarize
the major contributions of this work as: (1) We propose a multi-stage parallel and robust
text rectifier framework (PRTR) to solve the misalignment error; (2) We explain why the
misalignment error can be alleviated by PRTR in a stage-by-stage rectifying manner; (3) Ex-
tensive experiments conducted on seven benchmarks demonstrate that our PRTR achieved
outstanding performance comparing with popular state-of-the-art models.

2Test with the model provided officially on https://github.com/FangShancheng/ABINet

https://github.com/FangShancheng/ABINet
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2 Methodology

Motivation: Given an input image I ∈ RH×W×3, we aim at predicting the character se-
quence Y = {y1,y2, · · · ,yT} in the image, where T is the length of the text. For convenience,
let p(Y |I) denote the conditional distribution over I. Motivated by the observation in phys-
iology that humans progressively improve prediction confidence by iteratively correcting
the recognition results [2], instead of predicting Y directly from I, we sequentially predict
S(S ≥ 1) character sequences {Y (s)}S

s=0 to progressively approximate the ground-truth se-
quence Y ∗ . Assume that the prediction Y (s) just depends on Y (s−1) and I, the conditional
likelihood p(Y |I) to incorporate the intermediate predictions can be formulated as:

p(Y |I) = p(Y (S)|I) = p(Y (S)|I) ·1 = p(Y (S)|I)p(|Y (0), · · · ,Y (S−1)|Y (S),I)

= p(Y (0), · · · ,Y (S−1),Y (S)|I) = p(Y (S)|Y (S−1),I) · · · p(Y (1)|Y (0),I)p(Y (0)|I)
(1)

In order to achieve above goals, our framework is designed to consist of three parts: (i)
a visual feature extraction network that extracts a context-rich visual feature map, (ii) an
initial decoder that predicts the character sequence Y (0) based on the visual feature map, and
(iii) a robust visual-semantic rectifier (RVSR) module that generates the character sequence
Y (s) by progressively rectifying the last prediction Y (s−1). Since we rectify the prediction in
a stage-by-stage manner, several RVSRs will be stacked to enhance linguistic information in
the prediction sequence.

2.1 Visual Feature Extraction

We adopt ResNet31 [4] with multi-aspect global context attention [14] as the CNN-based
feature extractor (C). To enrich the feature context, we use several transformer encoder
layers [23] (T ) to model global spatial dependencies like in [2, 27]. Then, the visual features
X can be obtained as:

X =R(T (C(I))) ∈ RN×D, (2)

where R represents the reshape operator, D denotes the dimension of the features, N =
H
8 × W

4 , H and W are the height and the width of the image I.

2.2 Initial Decoder

The distribution p(Y (0)|I) denoting the initial decoder in Eq. (1) can be written as p(Y (0)|I) =
∏

T
t=1 p(yt |X). Each character output yt is predicted by a conditional distribution over the

visual features X. The initial decoder is entirely visually based. As in [2], position attention
is used to obtain the aligned visual features for all time-steps, based on the query paradigm:

V = softmax(
QU(X)T

√
D

)X, (3)

where U(·) is a mini U-Net, Q ∈RT×D is positional encodings denoting the character orders,
V ∈RT×D is the aligned visual features, and T is the length of character sequence. Given the
aligned features, the output probability over characters at time step t is computed by Pr(0)t =
Softmax(W(0)vt +b(0)) ∈ RC, where W(0) ∈ RC×D and b(0) ∈ RD are trainable parameters.
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2.3 Robust Visual-Semantic Rectifier
In the initial decoder, we decode the character sequence in a non-autoregressive way, which
lacks the ability of modeling contextual information. Therefore, there inevitably exist errors
in Y (0) which we expect can be rectified by language models. We propose a robust visual-
semantic rectifier (RVSR) to progressively refine erroneous predictions via joint visual-
semantic alignment in a stage-by-stage manner. Suppose there are S stages of RVSR, at
Stage 1, the input of RVSR is the prediction of the inital decoder Pr(0)t and the output of
RVSR is Pr(1)t . At Stage s, the refined prediction Y (s) is modeled as follows:

p(Y (s)|Y (s−1),I) =
T

∏
t=1

p(y(s)t |y(s−1)
1 ,y(s−1)

2 , · · · ,y(s−1)
T ,I) =

T

∏
t=1

p(y(s)t |E(y(s−1)
1 ), · · · ,E(y(s−1)

T ),X)

=
T

∏
t=1

p(y(s)t |E(A(Pr(s−1)
1 )), · · · ,E(A(Pr(s−1)

T )),X)≈
T

∏
t=1

p(y(s)t |F(Pr(s−1)
1 ), · · · ,F(Pr(s−1)

T ),X),

where A is non-differentiable argmax operator, E denotes the character embedding and F
represents the fully connected layer. RVSR uses Pr(s−1)

t which contain richer semantic infor-
mation to approximate one-hot encoding y(s−1)

t . RVSR first uses a fully connected layer to
convert probability vectors into feature vectors e(s−1)

t = F(Pr(s−1)
1 ). Since {y(s−1)

t }T
t=1 may

contain errors, it is inevitable to propagate the errors to the linguistic features {e(s−1)
t }T

t=1.
RVSR employs a dual-path semantic alignment (DPSA) module and a visual-lingual align-
ment (VLA) module to refine the prediction with linguistic knowledge among the words and
visual information of the images.
Dual-path semantic alignment (DPSA). The structure of a DPSA module is shown in the
right block of Fig. 2. To model the semantic information among the linguistic feature se-
quence, DPSA projects Pr(s−1)

t to a feature space with a fully-connected layer and obtains
{e(s−1)

t }T
t=1. As stated above, Pr(s−1)

t might contain noise. In computer vision, blurring is
commonly used to preprocess noise reduction. Inspired by this, DPSA applies 1D convolu-
tion (with parameters w and kernel size k) to {e(s−1)

t }T
t=1 and acquires {e(s)t }T

t as following:

e(s)t =
k

∑
i=1

wi · e(s−1)
t−⌊ k

2 ⌋+i
. (4)

To enhance the linguistic knowledge, DPSA introduces a semantic-enhancing path in which
a vanilla Transformer unit is employed, which is defined as:

ê(s)t = αtvt +∑
j ̸=t

α jv j, (5)

where α j = exp(qT
t k j)/∑

T
i=1 exp(qT

t ki) and qt = Wqe(s)t , kt = Wke(s)t ,vt = Wve(s)t are the
query, key and value (t ∈ {1,2, ...,T}), separately. To capture the diversity of relationships,
multi-head mechanism is integrated in Eq. (5).

However, if some characters are missed or superfluous in {y(s−1)
t }T

t=1, most linguistic
feature vectors in the sequence could be misaligned. To handle this problem, DPSA addi-
tionally introduces a semantic-aligning path to alleviate the misalignment propagated from
the prediction of Stage s−1. Like in [2], the semantic-aligning path contains a Transformer
unit which take T trainable global tokens {pt}T

t=1 as query, and {e(s)t }T
t=1 as key and value,
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where {pt}T
t=1 are independent on {e(s)t }T

t=1. Ideally, the semantic-aligning path is designed
to align the output with the ground-truth sequence and acquire a novel linguistic feature
sequence Ẽ(s)

t ∈ RT×D as follows:

Ẽ(s)
t = FFN(MultiHead(P,E(s),E(s))) (6)

where P and E(s) are the matrix form of {pt}T
t=1 and {e(s)t }T

t=1. MultiHead(query,key,value)
and FFN(x) are defined the same as in the standard Transformer encoder [23].

Combining the outputs of these two paths, we have,

e(s)t = G⊙ ê(s)t +(1−G)⊙ ẽ(s)t

G = σ(Wg Concat(ê(s)t , ẽ(s)t ))
, (7)

where Wg ∈ R2D×D and G ∈ RD. Consequently, e(s)t has been enhanced and realigned.
Visual-linguistic alignment (VLA) is to align the linguistic features with the visual features,
as depicted in Fig. 2. Previous researches show that fusing the aligned linguistic features
learned by the initial decoder and the rectifiers can give better results [2, 27]. However,
the fusion inevitably propagates misalignment to the final result. Aim to handle the error
propagation problem, VLA applies an attention model on the visual feature X, in which each
linguistic feature e(s)t focuses on a specific region of X and is combined with other selected
visual features of interest,

e(s)t = FFN(MultiHead(e(s)t ,X,X)), (8)

where MultiHead,FFN are the same as Eq. (6).
In this work, L RVSR blocks are stacked to update the linguistic features E(s) ∈ RT×D.

Finally, each linguistic feature is transferred into probabilities over the character set and
obtained a novel prediction Pr(s)t = Softmax(W(s)e(s)t +b(s)), where W(s) ∈RC×D and b(s) ∈
RD are parameters.
Online Probability Augmentation (OPA). In this work, four random data augmentation
strategies (including random removal, repetition, mixture and replacement) are adopted to
enhance the generalization and robustness of RVSR. OPA simulates possible types of errors
in the prediction, and pushes RVSR to correct them. We use an example to demonstrate
how these strategies are implemented. Let Pr(0) ∈ RT×C represent the probabilities over the
character set for all T time steps and Pr(0)t correspond to the probabilities at the time step
t. Denote o as the one-hot encoding of padding symbols. We build a probability memory
queue M ∈ RK×C by randomly sampling probability vectors Pr(0) in each mini-batch. In
each subsequent iteration, we randomly select a row of Pr(0) (for instant Pr(0)t ) and one of
the four augmentation strategies to be performed. If “removal” is sampled, we remove Pr(0)t ,
and o is added into the last row of Pr(0). If random “repetition” is selected, we insert another
copy of Pr(0)t after itself and remove the last row of Pr(0). “Random replacement” is that we
randomly choose a sample from M to replace Pr(0)t . Like mixup [29], “random mixture”
randomly chooses a sample from M and mixes it with Pr(0)t .
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Arch. Data IIIT SVT IC 03 IC 13 IC 15 SVTP CUTE AvgGCB TPS Aug. SA
95.1 87.3 94.2 94.1 78.4 80.9 92.0 89.4

✓ 95.8 88.9 94.9 94.9 80.7 84.5 90.3 90.7
✓ ✓ 95.5 89.8 95.5 95.0 83.0 85.4 92.0 91.3
✓ ✓ ✓ 96.2 92.0 95.8 95.0 84.2 86.9 93.1 92.2
✓ ✓ ✓ ✓ 96.3 92.3 95.2 94.8 84.7 87.0 93.8 92.3

Table 2: The effectiveness of GCB, TPS, data augmentation and SA on the baseline model.

2.4 Training Objective
PRTR is trained in an end-to-end manner by penalizing the difference between the prediction
and ground-truth at each stage. The objective function is given by:

L = λ0L(0)+
S

∑
s=1

λsL(s) =−λ0

T

∑
t=1

y∗t log p(Pr(0)t )−
S

∑
s=1

λs

T

∑
t=1

y∗t log p(Pr(s)t |Pr(s−1)
t ) (9)

where {y∗1,y
∗
2, · · · ,y∗T} is the ground-truth label, λ0, λs and S are hyper-parameters.

3 Experiments

3.1 Datasets and Implementation Details
IIIT 5K-words (IIIT) [16] contains 3,000 cropped images for test. Street View Text
(SVT) [24] has 647 testing images. ICDAR 2003 (IC 03) [15] contains 867 cropped im-
ages for testing after discarding images that contained non-alphanumeric characters or had
fewer than three characters [24]. ICDAR 2013 (IC 13) [8] contains 1,095 testing images.
Following [28], We select 1,015 images as a test set. ICDAR 2015 (IC 15) [9] is captured
by Google Glass without careful focusing. We use 1,811 images for evaluation without
some extremely distorted images like in [2, 27]. Street View Text Perspective (SVTP) [18]
contains 639 testing images. CUTE [19] contains 288 testing images.

The proposed PRTR was implemented using the PyTorch framework on 4 Tesla V100
GPUs with 16GB memory. The codes will be released soon. As [5, 11, 12], PRTR was
trained from scratch only on synthetic datasets, including MJSynth (MJ) [6], SynthText
(ST) [3] and SynthAdd (SA) [11], with a sampling ratio of 0.4 : 0.4 : 0.2. Images were
resized to 48×160 (keeping the original ratio). 39 symbols were recognized in total, which
are 0-9, a-z, end-of-sequence symbols and unknown symbols. We used ADAM optimizer
with the batch size of 272. In the first 50 steps, we used warming-up strategy. Then the
learning rate was set to 1e− 4 for training and decreased it to 1e− 5 at 0.8M. The training
was stopped at 1.2M. We fixed the random seed for all experiments. The model dimension
D was set to 512 throughout. There were 3 stacked transformer units in visual feature extrac-
tion. For each transformer unit, the number of heads was 8 and the number of hidden units
were 512. RVSR consisted of 3 blocks, thus L = 3. The hyper-parameters S, λ0, λ1, λ2, λ3
were set to 3, 0.2, 0.2, 0.2, 0.8, respectively.

3.2 Ablation study
Baseline. For comparison, we build a baseline model. Like PRTR, the backbone of the
baseline model was also ResNet31 with a 3-layer transformer encoder stacked on the top
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DPSA VLA OPA IIIT SVT IC03 IC13 IC15 SVTP CUTE Avg
96.3 92.3 95.2 94.8 84.7 87.0 93.8 92.3

✓ 95.6 94.0 96.8 96.2 85.6 90.4 94.1 93.0
✓ ✓ 96.2 94.6 97.0 95.9 84.9 90.2 94.8 93.1
✓ ✓ 96.8 93.5 96.0 96.0 85.0 89.5 95.5 93.1
✓ ✓ ✓ 97.0 94.4 96.4 95.8 86.1 89.8 96.5 93.6

Table 3: Ablation study of RVSR. We design a serial of experiments to validate the impact
of each component.

Conv. IIIT SVT IC03 IC13 IC15 SVTP CUTE Avg
% 96.0 92.6 96.5 95.3 84.8 88.7 94.4 92.6
✓ 95.6 94.0 96.8 96.2 85.6 90.4 94.1 93.0

Table 4: The effect of the 1D convolution in DPSA. Conv denotes whether employ 1D
convolution.

S IIIT SVT IC03 IC13 IC15 SVTP CUTE Avg
1 96.6 93.5 96.0 95.4 84.8 88.5 95.8 92.9
2 96.6 93.2 96.3 96.2 86.3 89.6 95.5 93.4
3 97.0 94.4 96.4 95.8 86.1 89.8 96.5 93.6

Table 5: The performance of PRTR with different numbers of stages (S). Increasing the
number of stages has positive impacts on the recognition performance.

and a multi-aspect global context attention block (GCB) [13] applied to the feature maps
at intermediate three stages. We used Thin Plate Spline (TPS) [7, 22] transformation to
normalize input images. Data augmentation including perspective distortion, blur, Gaussian
noise and color jitter were used to train the baseline. To check whether synthesized datasets
were useful for training the models, we also tested the performance on the aforementioned
SA dataset [11]. Tab. 2 shows the effectiveness of these four components (GCB, TPS, data
augmentation and SA) and the evaluation results of the baseline model. The last column is
the average accuracy on the seven test datasets. GCB boosted the accuracy about 1.3% on
average. TPS, data augmentation and SA also increased the accuracy by 0.6%, 0.9%, and
0.1% respectively. These tricks were also used in PRTR.

Comparing with the baseline, PRTR introduces additional robust visual-semantic recti-
fiers (RVSRs) to refine the predictions in a stage-by-stage manner, where each RVSR block
contains a dual-path semantic alignment (DPSA) module and a visual-linguistic alignment
(VLA) module. We also present an online probability augmentation (OPA) to augment the
intermediate predictions. We performed several experiments to validate the effectiveness of
these components in following.
The effectiveness of DPSA. The proposed DPSA captures the semantic information in pre-
vious prediction and realign the linguistic features with its dual-path structure. Comparing
the first row and the second row in Tab. 3, using DPSA alone improved the baseline model
by 0.7% in average accuracy. Especially, DPSA boosted the accuracy by 1.7%, 1.6%, 3.4%
on SVT, IC03 and SVTP respectively. We also found an interesting conclusion that, by re-
moving the 1D convolution from DPSA, the average accuracy was decreased by 0.4%, as
shown in Tab. 4. We reckon that the 1D convolution acts like a blurring filter and reduces the
impact of input noises.
The effectiveness of OPA. To boost the correction capability of the rectifier, ABINet and
JVSR both pre-train themselves with extra corpus by language model training topology.
However, this strategy is not end-to-end, which makes the training procedure complex.
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Moreover, in the fine-tuning phase, we found that the output of the initial decoder achieved
higher than 98% training accuracy. This indicates that the rectifier may lack of erroneous
cases to learn, which limits the rectifying ability of the rectifiers on test instances, which
spurs us to propose OPA. According to the second and third rows of Tab. 3, it can be seen
that OPA further improves the performance of using DPSA alone by 0.1%.
The effectiveness of VLA. VLA is used to refine the linguistic features by aligning it with
the visual features and avoid the over-confidence on the linguistic knowledge, such as the
failure case of “MACIC” in Fig. 1. Unlike ABINet, VLA does not integrate the misaligned
visual features of the initial decoder which may contain potential misaligned errors. As
shown in the second and fourth rows in Tab. 3, VLA slightly improved the average perfor-
mance by 0.1%. Especially, VLA increased the accuracy by 1.4% on CUTE, which consists
of many high-resolution images. We believe that VLA achieved high performance on CUTE
due to its ability to repeatedly align the linguistic features with the high-quality visual fea-
tures.
Interaction between these components. From the experiments above, using OPA and VLA
alone with DPSA could only improve the average accuracy by small margins. However,
when they were used together, the accuracy was boosted about 0.5%, as shown in the fifth
row of Tab. 3. A reasonable explanation is that, by adding VLA alone, we increase the model
capacity, but there are not enough erroneous cases to learn. OPA enriches the erroneous
cases, and thus combining these two modules together can improve the performance largely.
Progressive rectification. We conducted a serial of experiments to explore the impact of the
number of stages (S). Experiment results are shown in Tab. 5, where S is set to be 1, 2, and
3. Compared to the baseline model, An RVSR block can boost the average accuracy about
0.6%. When we increase the number of RVSR blocks, PRTR performs better. With 3 RSVR
blocks, PRTR improve the average accuracy by 1.3% and achieves 97% accuracy on IIIT,
96.5% accuracy on CUTE.

3.3 Comparisons with State-of-the-Arts
The comparison of our proposed PRTR with state-of-the-art methods is illustrated in Tab. 6.
PRTR exhibited superior performance on most of the datasets. Especially, PRTR achieved
97% on IIIT while the result of ABINet-LV is 96.2%. PRTR improved 4.8% on CUTE
(from 91.7% to 96.5%). Compared to our baseline, PRTR boosted the accuracy on CUTE by
2.7% (from 93.8% to 96.5%). Especially, Table 3 shows that VLA improved the accuracy
on CUTE by 1.7%. CUTE contains images with high quality but extreme curvy text. In our
setting, PRTR revisits the visual features in 9 VLA layers, and thus can make good use of
the high quality visual features. For fair comparison with other methods, we also conducted
experiment without SynthAdd dataset. Results show that PRTR without SA also achieves
impressive performance.

4 Conclusion
In this paper, we propose a parallel and robust scene text recognition framework (PRTR) to
tackle the misalignment issues of conventional multi-stage STR methods, which is equipped
with stacked RVSR blocks for rectifying primitive predictions from visual-semantic perspec-
tive. The proposed model can effectively reduce the semantic alignment error and visual-
linguistic error, and hence outperform other state-of-the-art models on seven popular bench-
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Method Regular test dataset Irregular test dataset
IIIT SVT IC03 IC13 IC15 SVTP CUTE

ASTER [22] 93.4 89.5 94.5 91.8 76.1 78.5 79.5
SAR [11] 91.5 84.5 _ 91.0 69.2 76.4 83.3
DAN [25] 94.3 89.2 95.0 93.9 74.5 80.0 84.4
SRN [27] 94.8 91.5 _ 95.5 82.7 85.1 87.8
SCATTER [12] 93.7 92.7 96.3 93.9 82.2 86.9 87.5
RobustScanner [28] 95.3 88.1 _ 94.8 77.1 79.5 90.3
GTC [5] 95.5 92.9 95.2 94.3 82.5 86.2 92.3
JVSR [1] 95.2 92.2 _ 95.5 84.0 85.7 89.7
PREN [26] 95.6 94.0 95.8 96.4 83.0 87.6 91.7
ABINet-SV [2] 95.4 93.2 _ 96.8 84.0 87.0 88.9
ABINet-LV [2] 96.2 93.5 _ 97.4 86.0 89.3 89.2
PRTR (OURS) 97.0 94.4 96.4 95.8 86.1 89.8 96.5
PRTR WO\SA (OURS) 96.9 94.6 96.1 95.5 85.7 88.8 96.2

Table 6: Performance Comparison on seven benchmarks. Bold and underline represents the
best and the second best performance. The PRTR row shows the results of PRTR trained
only MJ and ST. The PRTR WO\SA row shows the results removing the usage of SynthAdd.

mark datasets. In the future, we will further generalize PRTR on low-resolution or impaired
text images.
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