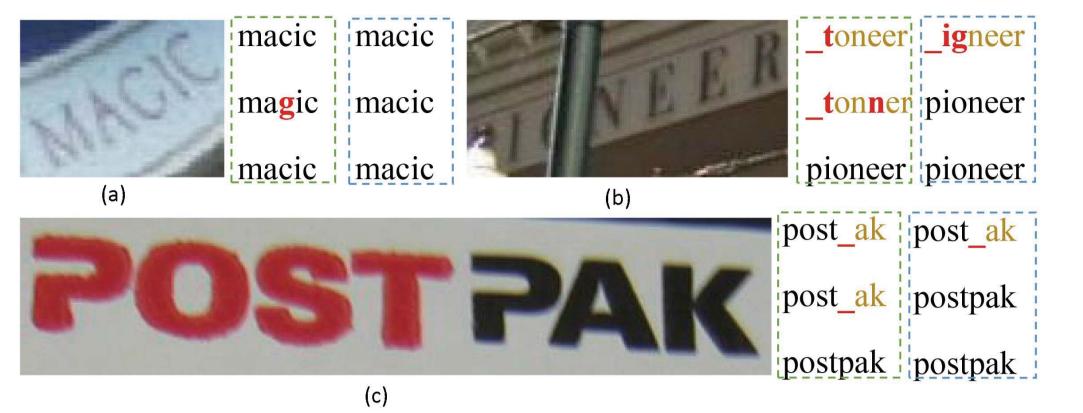
Parallel and Robust Text Rectifier for Scene Text Recognition Bingcong Li^{1,†}, Xin Tang^{1,†}, Jun Wang^{2,†}, Liang Diao¹, Rui Fang¹, Guotong Xie², Weifu Chen^{3,*}

¹ Visual Computing Group, Ping An Property & Casualty Insurance Company, Shenzhen, China ¹ Ping An Technology (Shenzhen) Co. Ltd., Shenzhen, China

³ School of Information and Telecommunication Engineering, Guangzhou Maritime University, Guangzhou, China

Introduction

Problems: Scene text recognition (STR) is to recognize text appearing in images. Current state-of-the-art STR methods usually adopt a rectifier to iteratively rectify errors from previous stage, which are not proficient in addressing misalignment problems, see Fig.1.



Methods (cont.)

Dual-Path Semantic Alignment

On one path, applies 1D convolution and multi-head transformer to rectify $\{\mathbf{e}_{t}^{(s-1)}\}$

$$\mathbf{e}_{t}^{(s)} = \sum_{i=1}^{k} \mathbf{w}_{i} \cdot \mathbf{e}_{t-\lfloor \frac{k}{2} \rfloor + i}^{(s-1)}.$$
(5)

$$\hat{\mathbf{e}}_{t}^{(s)} = \alpha_{t} \mathbf{v}_{t} + \sum_{i \neq t} \alpha_{j} \mathbf{v}_{j}, \tag{6}$$

where $\alpha_j = \exp(q_t^T k_j) / \sum_{i=1}^T \exp(q_t^T k_i)$ and $q_t = \mathbf{W}_q \mathbf{e}_t^{(s)}$, $k_t = \mathbf{W}_k \mathbf{e}_t^{(s)}$, $v_t = \mathbf{W}_v \mathbf{e}_t^{(s)}$. On another path, semantic aligning is imposed on $\{\mathbf{p}_t\}$ and $\{\mathbf{e}_t^{(s)}\}$ by

Figure 1: Three examples with intermediate predictions (a)(b)(c). Texts in green dash boxes and blue dash boxes represent the results of ABINet [?] and PRTR (ours). In each box, the first row is the initial prediction, the second row is the prediction of the rectifier, and the last one is the ground-truth. "_" is a placeholder, characters in red represent aligned errors, and characters in yellow correspond to misaligned errors.

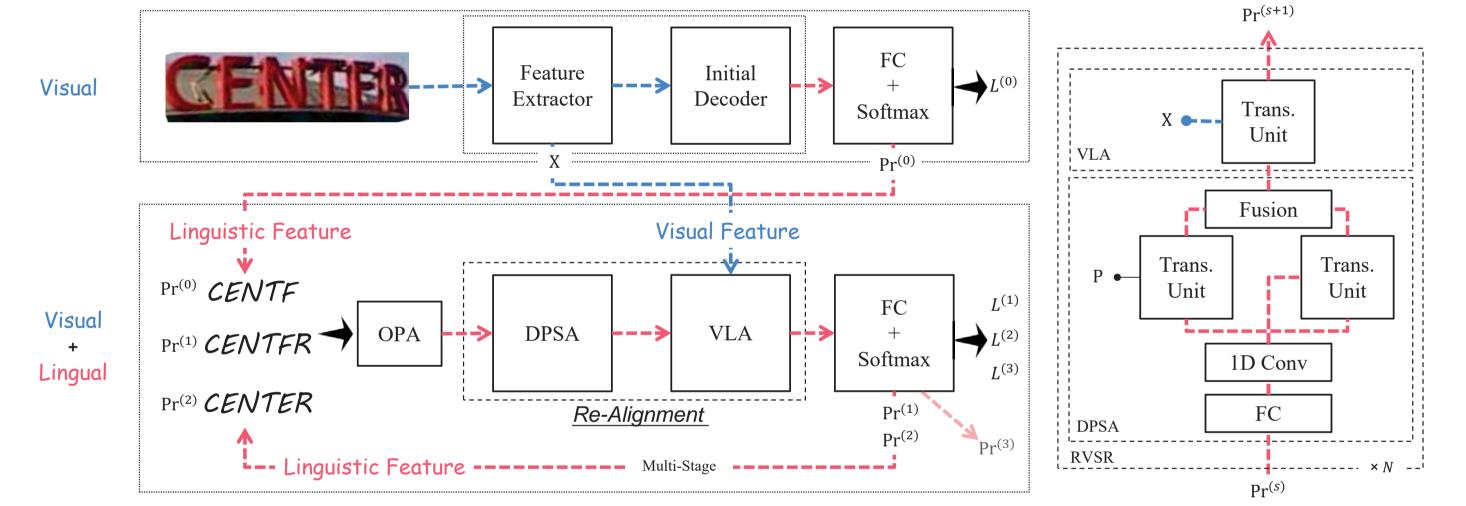
Motivation: Given an input image I, we aim at predicting the character sequence $Y = \{y_1, y_2, \dots, y_T\}$ in the image by maximizing p(Y|I). Motivated by the observation in physiology that humans progressively improve prediction confidence by iteratively correcting the recognition results, we sequentially predict $S(S \ge 1)$ character sequences $\{Y^{(s)}\}_{s=0}^{S}$ to progressively approximate the ground-truth sequence Y^* by

> $p(Y|I) = p(Y^{(S)}|Y^{(S-1)}, I) \cdots p(Y^{(1)}|Y^{(0)}, I)p(Y^{(0)}|I),$ (1)

Methods

Architecture of the proposed framework

PRTR consists of three parts: a visual feature extraction, an initial decoder and a robust visual-semantic rectifier (RVSR).



using multi-head transformer

$$\widetilde{\mathbf{E}}_{t}^{(s)} = \mathsf{FFN}(\mathsf{MultiHead}(\mathbf{P}, \mathbf{E}^{(s)}, \mathbf{E}^{(s)})).$$

Combining the outputs of the two paths

$$\mathbf{e}_{t}^{(s)} = \mathbf{G} \odot \hat{\mathbf{e}}_{t}^{(s)} + (\mathbf{1} - \mathbf{G}) \odot \widetilde{\mathbf{e}}_{t}^{(s)},$$

$$\mathbf{G} = \sigma(\mathbf{W}_{g} \operatorname{Concat}(\hat{\mathbf{e}}_{t}^{(s)}, \widetilde{\mathbf{e}}_{t}^{(s)})),$$
(8)

(7)

Visual-Linguistic Alignment

Apply an attention model on visual features **X** and linguistic features **e**^(s) to rectify fusion misalignment error

$$\mathbf{e}_{t}^{(s)} = \mathsf{FFN}(\mathsf{MultiHead}(\mathbf{e}_{t}^{(s)}, \mathbf{X}, \mathbf{X})), \tag{9}$$

Other training techniques such as Online Probability Augmentation (OPA) have been adopted in the training scheme.

Training Objective

PRTR is trained in an end-to-end manner by minimizing the objective function

$$L = -\lambda_0 \sum_{t=1}^{T} y_t^* \log p(\mathbf{Pr}_t^{(0)}) - \sum_{s=1}^{S} \lambda_s \sum_{t=1}^{T} y_t^* \log p(\mathbf{Pr}_t^{(s)} | \mathbf{Pr}_t^{(s-1)})$$
(10)

where $\{y_1^*, y_2^*, \dots, y_T^*\}$ is the ground-truth label, λ_0, λ_s and S are hyperparameters.

Figure 2: Overall architecture of PRTR. OPA, DPSA and VLA denote online probability augmentation, dual-path semantic alignment and visual-linguistic alignment respectively. The right part demonstrates the structure of DPSA and VLA.

Visual Feature Extraction

The visual features **X** of image I can be obtained as:

$$\mathbf{X} = \mathcal{R}(\mathcal{T}(\mathcal{C}(\mathbf{I}))) \in \mathbb{R}^{N \times D},$$
(2)

where C is a ResNet31 with multi-aspect global context attention, T is an transformer spacial encoder, \mathcal{R} represents the reshape operator. D denotes the dimension of the features, $N = \frac{H}{8} \times \frac{W}{4}$, H and W are the height and the width of **I**.

Initial Decoder

The initial decoder in Eq. (1) can be written as $p(Y^{(0)}|\mathbf{I}) = \prod_{t=1}^{I} p(y_t|\mathbf{X})$ that is visually based and the visual features are obtained by position transformer

$$\mathbf{V} = \operatorname{softmax}(\frac{\mathbf{Q}\mathcal{U}(\mathbf{X})^{T}}{\sqrt{D}})\mathbf{X},$$
(3)

Then the output probability over characters at time step t is computed by $\mathbf{Pr}_{t}^{(0)} = \text{Softmax}(\mathbf{W}^{(0)}\mathbf{v}_{t} + \mathbf{b}^{(0)}), \mathbf{v}_{t} \text{ is computed by Eq. (3).}$ **Robust Visual-Semantic Rectifier (RVSR)** We use RVSR to rectify the initial decoder $\mathbf{Pr}_{t}^{(0)}$. At Stage s, the refined prediction $Y^{(s)}$ is modeled as

Experiments

PRTR was implemented using Pytorch on 4 Tesla V100 GPUs with 16G memory. The hyper-parameters S, λ_0 , λ_1 , λ_2 , λ_3 were set to 3, 0.2, 0.2, 0.2, 0.8.

Ablation study

DPSA	VLA	OPA	IIIT	SVT	IC03	IC13	IC15	SVTP	CUTE	Avg
			96.3	92.3	95.2	94.8	84.7	87.0	93.8	92.3
\checkmark			95.6	94.0	96.8	96.2	85.6	90.4	94.1	93.0
\checkmark		\checkmark	96.2	94.6	97.0	95.9	84.9	90.2	94.8	93.1
\checkmark	\checkmark		96.8	93.5	96.0	96.0	85.0	89.5	95.5	93.1
\checkmark	\checkmark	\checkmark	97.0	94.4	96.4	95.8	86.1	89.8	96.5	93.6

Table 1: Ablation study of RVSR. We design a serial of experiments to validate the impact of each component.

Comparison with State-of-the-Art Models

Method	Reg	ular te	est da	taset	Irregu	ular test	dataset
Method	IIIT	SVT	IC03	IC13	IC15	SVTP	CUTE
ASTER [22]	93.4	89.5	94.5	91.8	76.1	78.5	79.5
SAR [11]	91.5	84.5	_	91.0	69.2	76.4	83.3
DAN [25]	94.3	89.2	95.0	93.9	74.5	80.0	84.4
SRN [27]	94.8	91.5	_	95.5	82.7	85.1	87.8
SCATTER [12]	93.7	92.7	<u>96.3</u>	93.9	82.2	86.9	87.5
RobustScanner [28]	95.3	88.1	_	94.8	77.1	79.5	90.3
GTC [5]	95.5	92.9	95.2	94.3	82.5	86.2	92.3
JVSR [1]	95.2	92.2	_	95.5	84.0	85.7	89.7
PREN [26]	95.6	94.0	95.8	96.4	83.0	87.6	91.7
ABINet-SV [2]	95.4	93.2	_	96.8	84.0	87.0	88.9
ABINet-LV [2]	96.2	93.5	_	97.4	86.0	<u>89.3</u>	89.2
PRTR (OURS)	97.0	<u>94.4</u>	96.4	95.8	86.1	89.8	96.5
PRTR WO\SA (OURS)	96.9	94.6	96.1	95.5	85.7	88.8	96.2

$$p(Y^{(s)}|Y^{(s-1)},\mathbf{I}) = \prod_{\substack{t=1\\T}}^{I} p(y_t^{(s)}|y_1^{(s-1)}, y_2^{(s-1)}, \cdots, y_T^{(s-1)}, \mathbf{I})$$

$$\approx \prod_{\substack{t=1\\t=1}}^{T} p(y_t^{(s)}|\mathcal{F}(\mathbf{Pr}_1^{(s-1)}), \cdots, \mathcal{F}(\mathbf{Pr}_T^{(s-1)}), \mathbf{X}),$$
(4)

 \mathcal{F} is the fully connected layer. RVSR employs a dual-path semantic alignment (DPSA) module and a visual-lingual alignment (VLA) module to refine the prediction with linguistic knowledge $\mathbf{e}_{t}^{(s-1)} = \mathcal{F}(\mathbf{Pr}_{1}^{(s-1)})$

Table 2: Performance Comparison on seven benchmarks. Bold and underline represents the best and the second best performance. The **PRTR** row shows the results of PRTR trained only MJ and ST. The **PRTR** WO\SA row shows the results removing the usage of SynthAdd.