Anatomically constrained CT image translation for heterogeneous blood vessel segmentation

***** îledeFrance

Giammarco LA BARBERA¹
Haithem BOUSSAID^{6,2}
Francesco MASO¹
Sabine SARNACKI^{3,4}

IP PARIS

Isabelle BLOCH^{5,1,3}

Pietro GORI¹

Laurence ROUET²

1 - LTCI, Télécom Paris, Institut
Polytechnique de Paris, France;
2 - Philips Research Paris,
Suresnes, France;
3 - IMAG2, Institut Imagine,
Université Paris Cité, France;
4 - Université Paris Cité, Chirurgie
Pédiatrique Viscérale et Urologique,
Hôpital Necker Enfants-Malades,
APHP, France;
5 - Sorbonne Université, CNRS,
LIP6, Paris, France.

6 - Technology Innovation Institute

INTRODUCTION

- Difficulty in constrast-enhanced Computed Tomography (ceCT) image segmentation → Heterogeneity in contrast.
- ► Combined use of ceCT and contrast-free (CT) CT images can improve the segmentation performances [1] PROBLEM: clinicians often acquire only one CT modality. → SOLUTION: unsupervised generative models.
- \blacktriangleright Difficulty in image-to-image translation with unpaired medical data [2] \rightarrow Lack of anatomical coherence.
- Exploiting approximately common anatomy between subjects can mitigate this limitation (PBS method) [3]. PROBLEM: in the abdominal region, the different sizes and lengths of the organs must be taken into account.

PROPOSED METHOD

- To address these issues, we propose an extension of the **CycleGAN** [4] which includes:
- (i) the use of Self-Supervised Body Regressor [5], SSBR), to better select anatomically-paired slices;
- (ii) the use of the SSBR score as an auxiliary classifier [6] adding an extra loss function (L_{ACL}) to the generator training, to reinforce the anatomical coherence.

SSBR is trained via the optimization of three loss functions that do not require annotated anatomical labels, to find the scores $Score_{k,p}$:

$$L_{order} = -\sum_{k=1}^{K} \sum_{p=1}^{P-1} \log(h(Score_{k,p+1} - Score_{k,p})) \qquad L_{norm} = \sum_{k=1}^{K} (f(Score_{k,1} + 1) + f(Score_{k,p} - 1)) \qquad L_{anat} = \sum_{k=1}^{K} \sum_{p=1}^{P-1} f(\Delta_{k,p+1}^{BM} - \Delta_{k,p+1}))$$

 $Score_{k,p}$ is the SSBR output for slice p of CT volume k; h = sigmoid activation function; f = smoothed L1 norm; K = number of CT volumes in the mini-batch; P = number of slices in each volume; BM = binary mask.

with
$$\begin{cases} \Delta_{k,p}^{BM} = 1 - \frac{|BM_{k,p} \cap BM_{k,p-1}|}{|BM_{k,p-1}|} \\ \Delta_{k,p} = Score_{k,p} - Score_{k,p-1} \end{cases}$$

RESULTS

Abu Dhabi, UAE

Unpaired training and qualitative results - public databases of healthy patiens from TCIA [7] of 82 abdominal images for each domain (72 for training, 10 for test)

Evaluation of various existing methods [2,3,4,8] to find the best one (G: generator; D: discriminator)

INPUT	UNIT G: U-Net D: PatchGAN	UNIT G: U-Net D: Wass. Loss	CycleGAN G: U-Net D: PatchGAN	G: U-Net D: Wass. Loss	TransGAN G:Transformer D: PatchGAN	CycleGAN G: Res-Net D: U-Net	CycleGAN G: Res-Net D: Wass. Loss	CycleGAN G: Res-Net D: PatchGAN
Real ceCT	→ Fake CT				→ Fake CT			
000			(p)	T.		(T)		
INPUT	UNIT G: U-Net D: PatchGAN	UNIT G: U-Net D: Wass. Loss	CycleGAN G: U-Net D: PatchGAN	CycleGAN G: U-Net D: Wass. Loss	TransGAN G:Transformer D: PatchGAN	CycleGAN G: Res-Net D: U-Net	CycleGAN G: Res-Net D: Wass. Loss	CycleGAN G: Res-Net D: PatchGAN
Real CT	→ Fake ceCT			→ Fake ceCT				
			Sec. Sec.		500			G ¢ \$

Application of our proposals to the best method

Quantitative study on paired database – pediatric and pathological database of Necker hospital of 10 paired ceCT-CT images

Ablation study using pre-trained network on unpaired data

CycleGAN Method	MSE $[10^{-2}]$ (\downarrow)	SSIM $[10^{-1}] (\uparrow)$	PSNR (↑)	TIME (↓)		
	real CT→fake ceCT vs real ceCT					
PBS	10,05 (2,89)	5,76 (0,65)	16,14 (1,15)	3h 2m		
AFFINE REG.	8,16 (1,80)	6,36 (0,57)	16,99 (0,87)	16h 33m		
SSBR selection	9,07 (2,39)	5,99 (0,71)	16,56 (1,07)	7h 5m		
$+L_{ACL}$	8,55 (2,28)	6,19 (0,69)	16,82 (1,07)	7h 49m		
+BM	8,42 (2,46)	6,24 (0,73)	16,91 (1,17)	7h 5m		
$+I_nA_d$	6,79 (2,85)	6,60 (0,74)	17,97 (1,54)	7h 14m		
$+L_{ACL}+BM$	8,19 (2,32)	6,36 (0,72)	17,02 (1,14)	7h 49m		
$+L_{ACL}+I_nA_d$	6,41 (1,97)	6,67 (0,63)	18,11 (1,22)	7h 55m		
$+L_{ACL}+I_nA_d+BM$	6,37 (2,01)	6,81 (0,62)	18,14 (1,23)	7h 55m		
	real ceCT→fake CT vs real CT					
PBS	8,26 (1,97)	5,36 (0,28)	16,96 (1,04)	3h 2m		
AFFINE REG.	4,72 (0,95)	6,77 (0,37)	19,36 (0,93)	16h 33m		
SSBR selection	7,15 (2,16)	5,68 (0,52)	17,64 (1,26)	7h 5m		
$+L_{ACL}$	5,87 (1,73)	6,08 (0,22)	18,47 (1,12)	7h 49m		
+BM	6,07 (1,28)	6,61 (0,65)	18,28 (0,99)	7h 5m		
$+I_nA_d$	6,16 (1,15)	5,87 (0,23)	18,18 (0,79)	7h 14m		
$+L_{ACL}+BM$	5,08 (0,85)	6,87 (0,52)	19,02 (0,74)	7h 49m		
$+L_{ACL}+I_nA_d$	4,24 (0,86)	6,80 (0,37)	19,83 (0,92)	7h 55m		
$+L_{ACL}+I_nA_d+BM$	4,05 (0,83)	7,23 (0,53)	20,03 (0,92)	7h 55m		

Blood vessel segmentation with the Levae-One-Patient-Out method using 3D nnU-Net [9]

<u> 1</u>	<u>nentation with the Levae-One-Patient-Out method using 3D nnU-Net [9</u>								
	INPUT Database	Structure	DS [100%] (†)	PR [100%] (†)	RC [100%] (†)	HD95 [mm] (↓)			
		on 10 patients							
	real ceCT and real CT	Arteries	74.61 (5.89)	85.22 (8.32)	69.06 (8.15)	15.39 (5.72)			
	real cect and real C1	Veins	45.62 (13.72)	60.61 (19.53)	38.68 (14.83)	31.47 (16.53)			
	real ceCT without data aug.	Arteries	63.75 (11.18)	80.33 (10.99)	53.88 (12.48)	23.43 (8.18)			
		Veins	21.18 (19.70)	64.04 (34.08)	15.45 (16.04)	42.14 (23.79)			
	real ceCT	Arteries	73.01 (6.57)	81.08 (8.70)	67.19 (8.43)	15.80 (7.01)			
	rear cec r	Veins	40.58 (23.50)	55.94 (31.39)	33.72 (26.61)	40.65 (30.90)			
	real ceCT and fake _{PBS} CT	Arteries	69.59 (8.89)	79.54 (10.85)	63.47 (12.59)	18.08 (8.21)			
		Veins	44.40 (22.75)	58.44 (21.78)	38.38 (23.20)	39.31 (16.79)			
	real ceCT and fake _{Ours} CT	Arteries	72.33 (7.41)	77.29 (10.32)	68.63 (8.88)	15.48 (6.38)			
	rear cec r and rake _{Ours} C r	Veins	44.49 (22.50)	54.98 (26.74)	40.28 (22.69)	38.90 (32.76)			
	on 5 more heterogeneous								
	real ceCT and real CT	Arteries	75.01 (5.82)	85.17 (4.37)	67.50 (8.57)	12.79 (6.04)			
	real cect and real C1	Veins	40.87 (14.73)	56.93 (18.63)	32.62 (13.05)	31.16 (10.76)			
				•	•				
	real ceCT without data aug.	Arteries	66.59 (8.31)	86.89 (5.70)	54.83 (10.29)	23.34 (9.14)			
	real cec i without data aug.	Veins	14.66 (17.05)	71.31 (39.90)	8.89 (10.98)	50.35 (29.50)			
	real ceCT	Arteries	72.94 (6.30)	84.37 (3.80)	64.89 (9.71)	13.49 (5.14)			
	icai ccc i	Veins	28.28 (19.84)	51.97 (38.06)	17.50 (18.41)	35.57 (14.33)			
	real ceCT and fake _{PBS} CT	Arteries	70.77 (9.18)	84.41 (5.96)	63.00 (15.51)	13.83 (5.95)			
	real cec i and lakepas c i	Veins	33.47 (26.92)	45.48 (34.33)	27.73 (23.78)	37.73 (23.42)			
	real ceCT and fake _{Ours} CT	Arteries	73.18 (7.51)	80.58 (4.59)	67.63 (11.25)	12.73 (4.10)			
	rear ecc 1 and rake _{Ours} C1	Veins	40.57 (20.25)	62.01 (13.31)	31.96 (18.91)	32.83 (13.84)			

CONCLUSION

- ▶ We showed significant improvements in the generated images compared to existing methods.
- We demonstrated that the synthesized images can be used to guide a segmentation method by compensating, without loss of performance, for the absence of the complementary real acquisition modality.

[1] V Sandfort et al. (2019). [2] X Yi et al. (2019). [3] H Yang et al. (2020). [4] Y Zhu et al. (2017). [5] K Yan et al. (2018). [6] K Clark et al. (2013). [7] A Odena et al. (2017). [8] Y Jiang et al. (2021). [9] F Isensee et al. (2021).