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Multi-Source Domain Adaptation

Motivation

Proposed Method

Comparison to baseline models

• A naïve second step training on the target domain using pseudo-labels can improve the 

performance of existing MSDA methods.

• BORT2 further improve the performance.

Comparison to the state of the art

• BORT2 obtains state-of-the-art performance on PACS and DomainNet.

Feature visualizations on the target domain

• BORT2 extracts more discriminative features

Experiments

Multi-Source Domain Adaptation

[1] Tianyuan Yu et al. Robust person re-identification by modelling feature uncertainty. In ICCV, 2019

Conclusions

• To reduce the domain shift, most existing methods try to align feature 

distributions across domains.
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1
• Negative transfer: source domain knowledge reduces the performance in target

2
• Source-domain-bias: e.g., statistics in BN layers can be highly source-domain biased

3
• Target domain re-training (using pseudo-labels) to alleviate source-domain bias 

4
• Pseudo-label may contain noise

5
• Train noise-robust model and improve the quality of pseudo-labels
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Bi-level Optimization based Robust Target Training (BORT2)

• Motivation: A second step training on target domain to alleviate source-domain bias 

• Key: Train noise-robust model and improve the quality of pseudo-labels
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Alleviate source-domain-bias

State-of-the-art performance

Second step target retraining

Bi-level Optimization based Robust 

Target Training (BORT2)

Results on DomainNet

Results on PACS

Step 1 can be trained using any existing multi-source domain adaptation (MSDA) methods

• E.g.,DANN, M3SDA, DRT.

Step 2 is the bi-level optimization built on feature uncertainty estimation

• A stochastic CNN layer in the  noise-robust target model is used to model each target 

instance feature as a Gaussian distribution

• The variance of the Gaussian measure the label uncertainty as per [1]

• In the inner loop, the feature uncertainty can help the cross-entropy loss to identify 

low-quality pseudo-labels

• Low-quality pseudo-labels are downplayed to train a noise-robust model

• The outer loop treat the labeling function as hyper network, which is optimized to 

minimize feature uncertainty loss using bi-level optimization 

• Low feature uncertainty usually implies higher probability of pseudo-labels. 
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