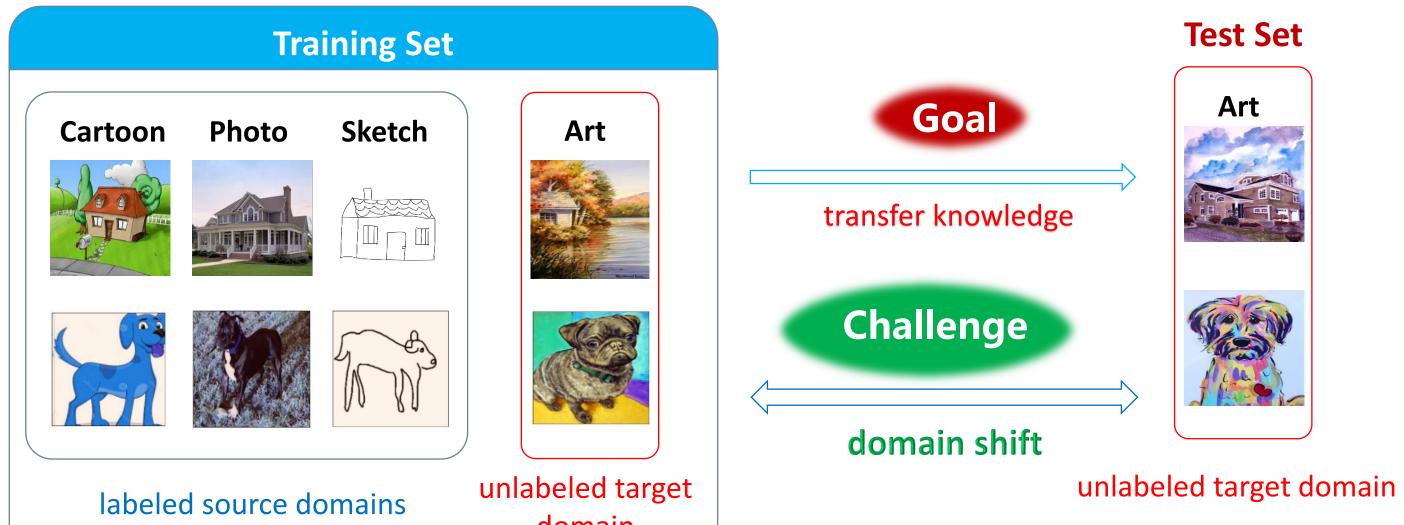
Robust Target Training for Multi-Source Domain Adaptation

Zhongying Deng, Da Li, Yi-Zhe Song, Tao Xiang

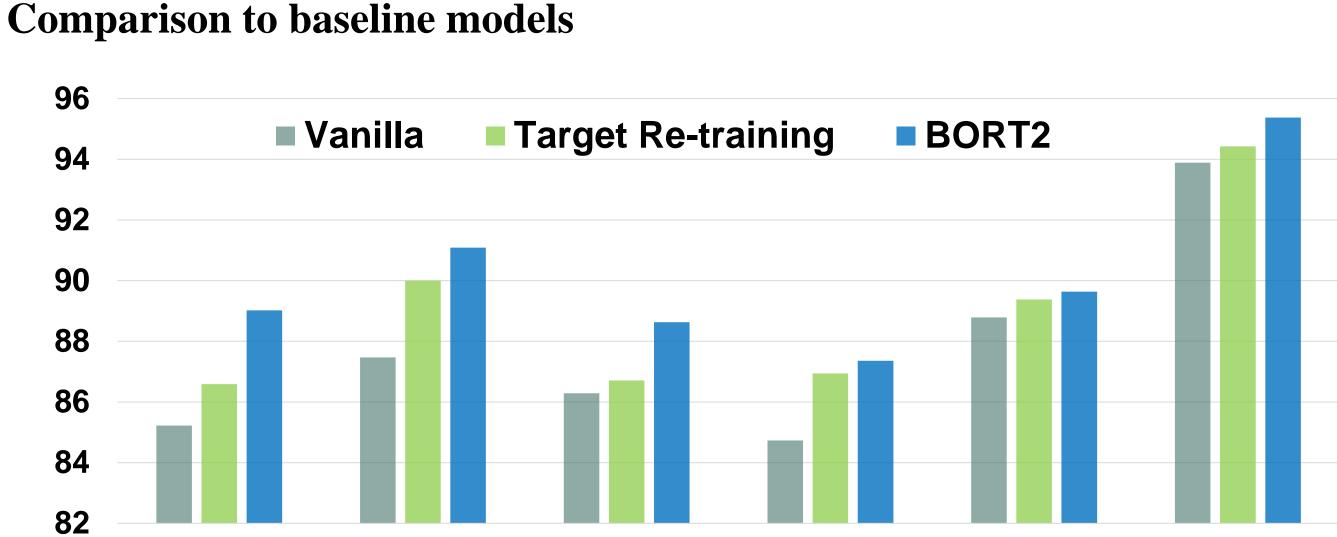
z.deng@surrey.ac.uk

Code: https://github.com/Zhongying-Deng/BORT2

Multi-Source Domain Adaptation



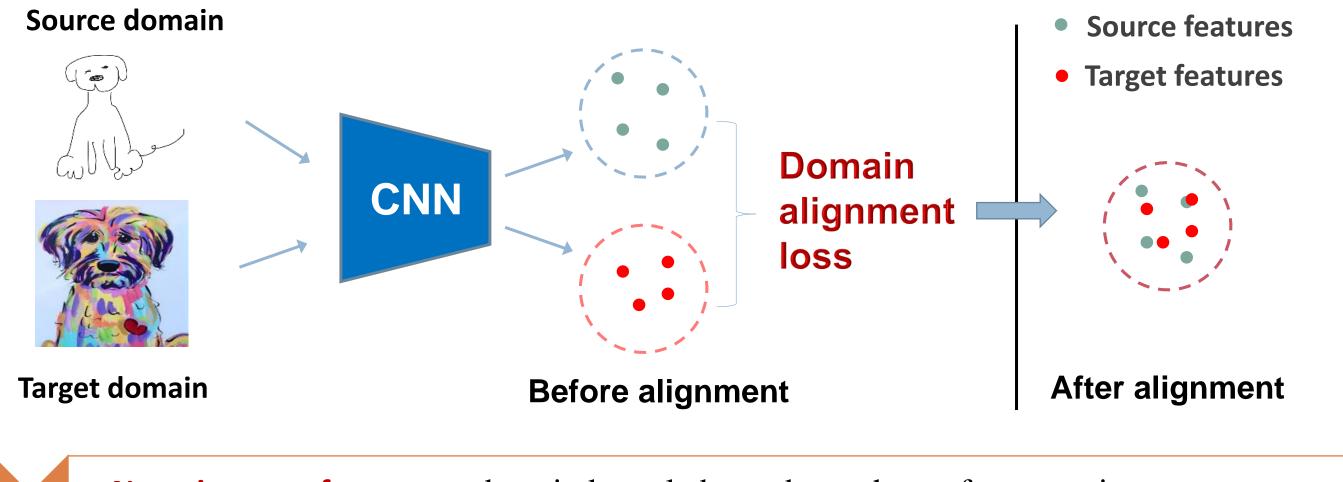
Experiments



domain

Motivation

To reduce the domain shift, most existing methods try to align feature \bullet distributions across domains.



- Negative transfer: source domain knowledge reduces the performance in target
- Source-domain-bias: e.g., statistics in BN layers can be highly source-domain biased
- Target domain re-training (using pseudo-labels) to alleviate source-domain bias
- Pseudo-label may contain noise

- MCD
- A naïve second step training on the target domain using pseudo-labels can improve the performance of existing MSDA methods.
- BORT² further improve the performance.

Comparison to the state of the art

	Method	Art.	Cartoon	Sketch	Photo	Avg.
	Oracle	99.53	99.84	99.53	99.92	99.71
	Source-only	81.22	78.54	72.54	95.45	81.94
One-step training methods may suffer from source-domain- bias	MDAN [35]	83.54	82.34	72.42	92.91	82.80
	DCTN [31]	84.67	86.72	71.84	95.60	84.71
	$M^3SDA-\beta$ [22]	84.20	85.68	74.62	94.47	84.74
	MDDA [36]	86.73	86.24	77.56	93.89	86.11
	LtC-MSDA [30]	90.19	90.47	81.53	97.23	89.85
	DAC-Net [6]	91.39	91.39	84.97	97.93	91.42
	BORT ² ($Ours$)	95.02	94.51	93.23	98.74	95.38

Results on DomainNet

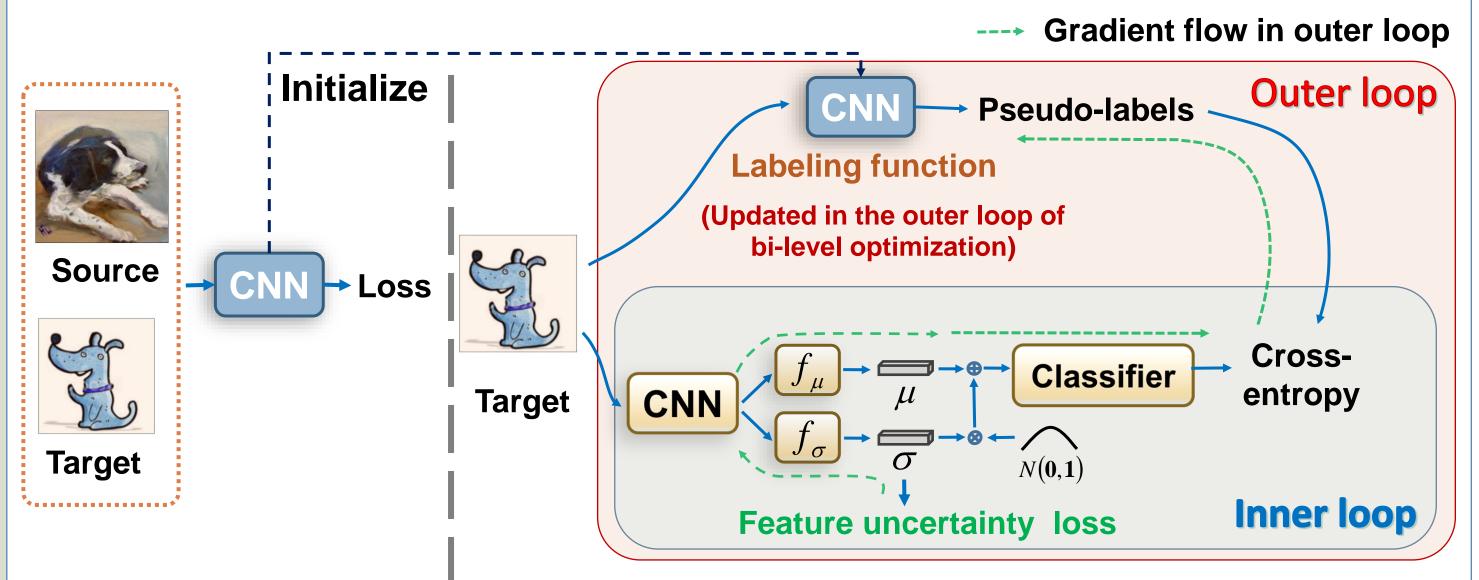
Method	Clipart	Infograph	Painting	Quickdraw	Real	Sketch	Avg.
Oracle	797+016	410+018	714 ± 011	726+070	837+013	7059 ± 0.06	69.8

Results on PACS

• Train noise-robust model and improve the quality of pseudo-labels

Proposed Method

- Motivation: A second step training on target domain to alleviate source-domain bias
- Key: Train noise-robust model and improve the quality of pseudo-labels



(a) Step 1: Train labeling function on both source and target domains

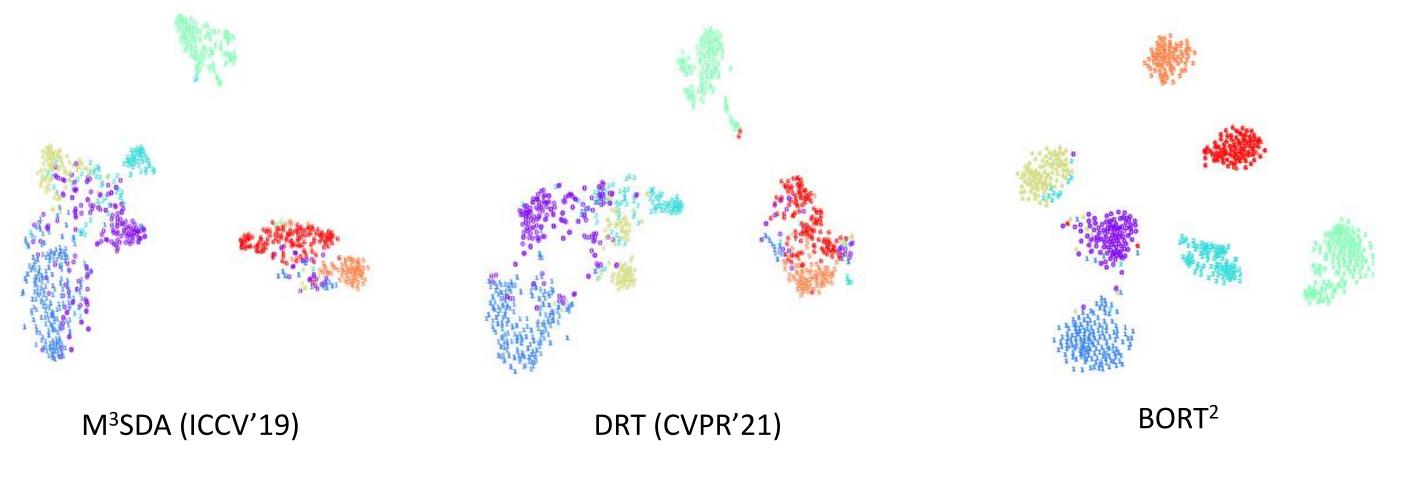
(b) Step 2: Train noise-robust model only on the pseudolabeled target domain

Bi-level Optimization based Robust Target Training (BORT²)

STEM [21] BORT ² (Ours)	72.0 74.0 ±0.04	$\frac{28.2}{29.1\pm0.19}$	61.5 59.6±0.06	25.7 28.0 ±0.02	72.6 69.3±0.04	60.2 60.3 ±0.14	53.4
DAC-Net [6]	72.5 ± 0.04	$27.6 {\pm} 0.10$	$57.8 {\pm} 0.06$	23.0 ± 0.14	$66.7 {\pm} 0.10$	59.5 ± 0.12	51.2
DRT [14]	69.7±0.24	31.0 ±0.56	$59.5 {\pm} 0.43$	9.9 ± 1.03	$68.4 {\pm} 0.28$	59.4 ± 0.21	49.7
LtC-MSDA [30]	63.1 ± 0.50	$28.7{\pm}0.70$	$56.1 {\pm} 0.50$	$16.3 {\pm} 0.50$	$66.1 {\pm} 0.60$	$53.8 {\pm} 0.60$	47.4
CMSS [32]	64.2 ± 0.18	$28.0{\pm}0.20$	$53.6 {\pm} 0.39$	$16.0 {\pm} 0.12$	$63.4 {\pm} 0.21$	53.8 ± 0.35	46.5
$M^3SDA-\beta$ [22]	58.6±0.53	$26.0{\pm}0.89$	$52.3 {\pm} 0.55$	$6.3 {\pm} 0.58$	$62.7 {\pm} 0.51$	49.5 ± 0.76	42.6
MCD [24]	54.3±0.64	22.1 ± 0.70	$45.7 {\pm} 0.63$	$7.6 {\pm} 0.49$	$58.4 {\pm} 0.65$	43.5 ± 0.57	38.5
DCTN [31]	48.6±0.73	$23.5{\pm}0.59$	$48.8 {\pm} 0.63$	7.2 ± 0.46	$53.5{\pm}0.56$	47.3 ± 0.47	38.2
DANN [8]	45.5±0.59	13.1 ± 0.72	$37.0 {\pm} 0.69$	$13.2 {\pm} 0.77$	$48.9 {\pm} 0.65$	31.8 ± 0.62	32.6
Source-only [22]	47.6±0.52	13.0±0.41	38.1±0.45	13.3±0.39	$51.9 {\pm} 0.85$	33.7±0.54	32.9
Ordere	17.1±0.10	11.0±0.10	/1.1±0.11	12.0±0.10	00.7 ± 0.10	70.57±0.00	02.0

BORT² obtains state-of-the-art performance on PACS and DomainNet.

Feature visualizations on the target domain



BORT² extracts more discriminative features

Step 1 can be trained using any existing multi-source domain adaptation (MSDA) methods

• E.g., DANN, M3SDA, DRT.

Step 2 is the **bi-level optimization** built on **feature uncertainty estimation**

- A stochastic CNN layer in the noise-robust target model is used to model each target instance feature as a Gaussian distribution
- The variance of the Gaussian measure the label uncertainty as per [1]
- In the inner loop, the feature uncertainty can help the cross-entropy loss to identify low-quality pseudo-labels
- Low-quality pseudo-labels are downplayed to train a noise-robust model
- The outer loop treat the labeling function as hyper network, which is optimized to minimize feature uncertainty loss using bi-level optimization
- Low feature uncertainty usually implies higher probability of pseudo-labels.

Conclusions

Multi-Source Domain Adaptation

 $\mathbf{01}$

04

Alleviate source-domain-bias

Bi-level Optimization based Robust Target Training (BORT2)

Second step target retraining

State-of-the-art performance

[1] Tianyuan Yu et al. Robust person re-identification by modelling feature uncertainty. In ICCV, 2019