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Abstract

Morphological neurons, that is morphological operators such as dilation and ero-
sion with learnable structuring elements, have intrigued researchers for quite some time
because of the power these operators bring to the table despite their simplicity. These
operators are known to be powerful nonlinear tools, but for a given problem coming up
with a sequence of operations and their structuring element is a non-trivial task. So, the
existing works have mainly focused on this part of the problem without delving deep into
their applicability as generic operators. A few works have tried to utilize morphological
neurons as a part of classification (and regression) networks when the input is a feature
vector. However, these methods mainly focus on a specific problem, without going into
generic theoretical analysis. In this work, we have theoretically analyzed morphological
neurons and have shown that these are far more powerful than previously anticipated.
Our proposed morphological block, containing dilation and erosion followed by their
linear combination, represents a sum of hinge functions. Existing works show that hinge
functions perform quite well in classification and regression problems. Two morpholog-
ical blocks can even approximate any continuous function. However, to facilitate the
theoretical analysis that we have done in this paper, we have restricted ourselves to the
1D version of the operators, where the structuring element operates on the whole input.
Experimental evaluations also indicate the effectiveness of networks built with morpho-
logical neurons, over similarly structured neural networks.

1 Introduction
Mathematical morphology is a set and lattice theoretic technique for the analysis of geo-
metrical structures. Although it originated from the theoretical study of the geometry of
porous materials, it is currently extensively used in the domain of digital image process-
ing. It serves as a non-linear tool for processing digital images. Morphological operators
decompose objects or shapes into meaningful parts which helps in understanding them in
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terms of the elements. Since the identification of objects and their features are directly cor-
related with their shapes and arrangement, morphological methods are quite suited for visual
tasks [8]. However, coming up with a sequence of transformation and their parameters for a
given problem is not straightforward and requires expert knowledge of the problem. To this
end, researchers have tried to automatically learn the parameters (structuring element) of
mathematical morphology operators (i.e., dilation and erosion). These learnable structures
are termed as morphological neurons. Although this idea is motivated by the use of these
operators in image processing, they are quite generic and can be used for tasks like classi-
fication [16, 21] and regression [5]. on applying morphological neurons for specific tasks.
Theoretical analysis of this structure and its properties are lacking in the literature. Intending
to fill this gap, in this paper, we have theoretically analysed the properties of morphological
neurons and shown that a specific arrangement of the neurons can approximate any continu-
ous function. To be more precise, we have defined a structure called a Morphological Block
and shown that a sequence of two morphological blocks can work as a universal approxima-
tor. However, to facilitate the theoretical analysis, in this paper, we have restricted ourselves
to the 1D version of the morphological operators, where the operators work over the whole
input at once, not locally.

The contributions of this work can be summarized as follows.

1. We have theoretically analyzed the properties of the morphological neurons and have
shown that not all sequences of neurons are useful as some of them may be represented
using fewer neurons.

2. One such useful sequence is a layer of both dilation and erosion operations, followed
by a layer computing a linear combination of the outputs. We call this a Morphological
Block.

3. We have shown that a morphological block represents a sum of hinge functions. Sum
hinge functions work well for tasks like regression, classification and function approx-
imation [2].

4. We have proved that a sequence of two morphological blocks can approximate any
continuous function over arbitrary compact sets.

5. We have shown due to the nonlinear nature of these operators, the neurons can learn
more complex decision boundaries with a similar number of parameters.

The rest of the paper is organized as follows. Existing works that has experimented with
morphological neurons are briefly outlined in Section 2. In Section 3, we describe mor-
phological neurons and theoretically analyse their properties. Section 4 provides empirical
validation of the proposed structure. Finally, concluding remarks are presented in Section 5.

2 Related works
The use of morphological operations in a learning framework is first proposed by Davidson
and Hummer [4] in their effort to learn the structuring element of dilation operation on im-
ages. A similar effort has been made to learn the structuring elements in more recent work
by Masci et al. [12]. The use of morphological neurons for problems other than images is
first proposed by Ritter and Sussner [16]. They propose to use single-layer network architec-
ture and focused only on the binary classification task. To classify the data, their proposed
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network is able to learn two axis-parallel hyperplanes as the decision boundary. This single-
layer architecture has later been extended to two-layer architecture by Sussner [20]. This
two-layer architecture can learn multiple axis-parallel hyperplanes, and therefore is able to
solve arbitrary binary classification tasks. But, in general, the decision boundaries may not
be axis-parallel, and so, a large number of hyperplanes may need to be learned by the net-
work. So, Barmpoutis and Ritter [1] proposed to learn an additional rotational matrix that
rotates the input before trying to classify data using axis-parallel hyperplanes. In a separate
work by Ritter et al. [18] the use of L1 and L∞ norm has been proposed as a replacement of
the min/max operation of dilation and erosion in order to smooth the decision boundaries.
Ritter and Urcid [17] introduced the dendritic structure of biological neurons to the mor-
phological networks. This structure creates hyperbox-based decision boundaries instead of
hyperplanes. The authors have proved that hyperboxes can estimate any compact region and,
thus, any two-class classification problem can be solved. A generalization of this structure
to the multiclass case has also been done by Ritter et al. [19]. Experimentation with net-
work architecture has also been attempted by Sussner and Esmi [21], where they propose a
new structure called morphological neurons with competitive learning. In this setting, the
argmax operator is utilized at the output of several neurons to implement the winner-take-all
strategy. The authors claim with this setup the network is able to learn complex decision
boundaries. = Methods mentioned till now, employ special optimization techniques to learn
the parameters since the max and min operations employed by dilation and erosion are not
differentiable. So, altogether different strategies have been proposed to overcome this issue.
Araújo [5] utilized network architecture similar to morphological neurons with competitive
learning to forecast stock markets. The argmax operator was replaced with a linear activa-
tion function so that the network is able to regress forecasts and the gradient descent could
be utilized for training. For morphological neurons with dendritic structure, Zamora and
Sossa [25] proposed to replace the argmax operator with a softmax function, in order to
utilize the gradient descent optimizer. However, more recent methods don’t consider this a
hindrance. The gradient is computed where it is possible and taken to be 0 at other places.

The more recent works employing morphological neurons take altogether different ap-
proaches in using morphological operations. Franchi et al. [6] proposed to utilize morpho-
logical operations as layers within neural networks. They have shown the pooling layer in
CNNs can be replaced with a learned morphological pooling, and using CNNs with only
morphological layers works well in denoising images. Nogueira et al. [15] proposed to uti-
lize morphological operations to be able to learn novel deep features while training the net-
work end-to-end with gradient descent. The authors’ have shown experimentally that these
features work well for different image classification tasks. Islam et al. [9] proposed using
morphological hit-or-miss transform to build networks. Mondal et al. [13] introduced the
opening-closing network for image de-raining and dehazing using morphological opening
and closing operations. Limonova et al. [11] proposed new morphological neurons called,
bipolar morphological neurons. The authors claim to achieve better recognition results com-
pared to neural networks.

Although morphological neurons have been utilized in various ways for specific applica-
tions, their generic theoretical justification is scarce to date. It is still an open question how
morphological networks should be designed so that they become a generic tool that can solve
any learning problem. In the following subsections, we have tried to answer these questions.
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3 Morphological Neurons
In this section, we first introduce morphological neurons and their properties. Then we define
the Morphological Block and show that it computes a sum of hinge functions. As pointed out
in [2], hinge functions are a powerful alternative for classification, regression and function
approximation. Although the function approximation capability of a morphological block
is not known, we have proved that by using two morphological blocks sequentially, we can
approximate any function.

3.1 Dilation and Erosion neurons
Dilation and Erosion neurons are the two most basic morphological neurons because all other
morphological operations can be represented as a composition of these two. Note that, we
are utilizing the 1D version of these operations to facilitate theoretical analysis. Given an
input xxx ∈Rd and a structuring element sss ∈Rd , the operation of dilation (⊕) and erosion (⊖)
neurons are defined, respectively, as

xxx⊕ sss = max
k

{xk + sk}, (1)

xxx⊖ sss = min
k
{xk − sk}, (2)

where xk denotes kth element of input vector xxx. After computing dilation and erosion we
may set a limiter or bias, say, sd+1 to compute final output from dilation and erosion neurons
by max{xxx⊕ sss,sd+1} and min{xxx⊖ sss,−sd+1} respectively. Note that this ensures sd+1 to be
the lower bound of the output of the dilation neuron, whereas it is the upper bound for the
erosion; hence, the term ‘limiter’. Alternatively, we can write it as follows. Let 0 is appended
to the input xxx, i.e, xxx′ = [xxx,0]T and sd+1 is appended to sss, then

max{xxx⊕ sss,sd+1}= max{max
k

{xk + sk},sd+1}= max
k=1,...,d+1

{x′k + s′k}= xxx′⊕ sss′ (3)

Where s′k is a element of structuring element sss′. Similarly we can get xxx′⊖sss′. It may be argued
that d +1th component is selected if the input has no effect on the output or the function. In
these neurons, the structuring element (sss′) is learned in the training phase.

The max and min operators used in the dilation and erosion neurons are only piece-wise
differentiable. As a result, only a single element of the structuring element is updated at each
iteration. To overcome this problem we propose to use the soft version of max and min [3]
to define soft dilation and soft erosion neurons as follows.

xxx′⊕̂sss′ =
1
β

log

(
∑
k+1

e(x
′
k+s′k)β

)
, (4)

xxx′⊖̂sss′ =− 1
β

log

(
∑
k+1

e(s
′
k−xk)β

)
, (5)

where ⊕̂ and ⊖̂ denote the soft dilation and soft erosion, respectively, and β is the “hardness”
of the soft operations. The soft version can be made close to its “hard” counterpart by making
β large enough [3]. Henceforth, for notational convenience, we use xxx and sss to denote input
and structuring element respectively for dilation (or erosion) with a limiter. In other words,
the dilation and erosion neurons include the limiter.
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3.2 Gradient of Morphological Neurons
Network build using morphological neurons can be trained using the backpropagation algo-
rithm, provided we are able to find their derivative. The max and min operations of dilation
and erosion, respectively, are not differentiable. To be precise, they are not differentiable
when the arguments to the max or min operation are equal. However, this rarely occurs
in practice. So, we may define the derivative of the dilation and erosion operation in the
following way.

∂ z+

∂ si
=

{
1 if xi + si is the max,
0 otherwise.

∂ z−

∂ si
=

{
1 if xi − si is the min,
0 otherwise.

(6)

So, the computed gradient is non-zero only in the element for which the maximum (or mini-
mum) is attained. For this reason, the computed loss or error affects only one element of the
structuring element for a given sample. As a result, only a single neuron is activated in the
network and, consequently, only a single weight (si) is updated at a time. This may result in
slow convergence of the training of the network. In practice, training a large morphological
network is very slow. Soft morphological neurons mitigate this issue to some extent.

3.3 Equivalence of configurations
The morphological neurons may be arranged in different ways to create a network with the
aim of solving a particular task. But not all of these configurations are useful and some of
them may be spurious. The following are true for different network architectures.

Theorem 1. If we denote Dm1Em2 as a layer with m1 dilation neurons and m2 erosion neu-
rons and L as a linear combination layer, the following may be said about their configura-
tions.

(i) The architecture Dm1E0 → Dm2E0 → ·· · → Dmℓ
E0 consisting only of dilation layers is

equivalent to the architecture Dmℓ
E0 with a single dilation layer. A similar statement is

true if one considers architectures with only purely erosion layers.

(ii) The architecture D1E1 → D1 is not equivalent to D1E0. Similarly, it is not equivalent to
D0E1, and, consequently, the architectures D1E1 → D1E1 and D1E1 are not equivalent.

(iii) The architecture D1E1 → D1 → L is not equivalent to D1E0 → L.

(iv) The architecture D2E0 → D0E2 → D1 is not equivalent to D2E0 → D1.

The proof is provided in the supplementary material.

3.4 Morphological block
Here we define Morphological Block, which is one configuration that can be utilized as a
building block for making more complex networks. A Morphological block consists of a
layer with dilation and erosion neurons followed by a linear combination of their outputs
(Figure 1). We call the layer of dilation and erosion neurons the dilation-erosion layer and
the following layer as the linear combination layer. Let us consider a morphological block
with n dilation neurons and m erosion neurons in the dilation-erosion layer followed by c
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g1(x) g2(x) gc(x)

z1
⊕

zn
⊕

z1
⊖

zm
⊖

Erosion Neurons

x1 x2 xd xd+1

⊕
Dilation Neurons

⊖

Figure 1: Architecture of single layer morphological block. It contains an input layer, a
dilation-erosion layer with n dilation and m erosion neuron and a linear combination layer
with c neurons producing the output. The limiter associated with the input xd+1 = 0.

neurons in the linear combination layer. Let xxx ∈ Rd be the input to the network and z+i and
z−j be the output of the ith dilation neuron and the jth erosion neuron respectively:

z+i = xxx⊕ sss+i , (7)

z−j = xxx⊖ sss−j , (8)

where sss+i and sss−j are the structuring elements of the respective neurons. Note that i ∈
{1,2, . . . ,n} and j ∈ {1,2, . . . ,m}. The final output of a node in the linear combination
layer is computed as

M(xxx) =
n

∑
i=1

z+i ω
+
i +

m

∑
j=1

z−j ω
−
j , (9)

where ω
+
i and ω

−
j are the weights of the combination layer. When the network is trained, it

learns all sss+i , sss−j , ω
+
i and ω

−
j .

3.5 Morphological block as a sum of hinge functions
In this subsection, we show that the simple morphological block can be represented as a
sum of hinge functions. Hinge functions provide a powerful representation for problems like
classification, and regression tasks [2]. Additionally, we try to develop the intuition behind
the morphological block with a toy example.

Definition 1 (k-order Hinge Function [23]). A k-order hinge function h(k)(xxx) consists of
(k+1) hyperplanes continuously joined together. It may be defined as

h(k)(xxx) =±max{wwwT
1 xxx+b1,wwwT

2 xxx+b2, . . . ,wwwT
k+1xxx+bk+1} (10)

Proposition 1. The function computed by a Morphological Block (denoted by M(xxx)) with n
dilation and m erosion neurons followed by their linear combination, is a sum of multi-order
hinge functions.

In fact, we can show that

M(xxx) =
l

∑
i=1

αih
(d)
i (xxx), (11)
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(a) NN-ReLU
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(b) Maxout Network
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(c) Morphological Block (d) Soft Morphological
Block

Figure 2: Decision boundaries learned by different networks with two hidden neurons.
(a) Baseline neural network is able to learn only two planes. (b) Maxout network is able
to learn two more planes with the help of additional parameters. (c) Morphological Block is
able to learn more planes with the same number of parameters as NN-ReLU. (d) Using the
soft version of the block, smooths the learned decision boundary. This further enhances the
discrimination capability of the network while retaining the same number of parameters.

where l = m+n, αi ∈ {1,−1} and h(d)i (xxx),1 ≤ i ≤ l, are d-order hinge functions. The proof
is given in the supplementary material.

Since a morphological block computes a sum of hinge functions, it can potentially learn
a large number of hyperplanes. It can be seen a morphological block can have maximum
(d + 1)l − 1 hyperplanes. Out of all those, there can be almost d!×

( l
d

)
× (d +1)l−d hy-

perplanes that are not parallel to any of the axes. (This has been further explained in the
supplementary material.) These hyperplanes can act as decision boundaries as has been
demonstrated experimentally using a toy dataset representing a two-class problem.

The toy dataset contains samples that are distributed along two concentric circles, one
circle for each class. The circles are centered at the origin. We compare the results obtained
by various networks with two neurons in the hidden layer. It is observed that the baseline
neural network (NN-ReLU) fails to classify this data as with two hidden neurons it learns
only two hyperplanes, one for each neuron (Figure 2(a)). The result of maxout network[7] is
better, because, in this case, the network learns 2k = 4 hyperplanes as shown in figure 2(b).
Note that with two morphological neurons in the dilation-erosion layer, our network has
learned 6 hyperplanes to form the decision boundary (Figure 2(c)). We should get at most 8
hyperplanes from the morphological block. However, out of these only two decision bound-
aries are placed in any arbitrary orientation in the 2D space, while others are parallel to either
of the axes. Whereas using the soft version of dilation and erosion smooths the boundary,
making it aligned with the data (Figure 2(d)).

3.6 Two Morphological Blocks: An universal approximator
A single morphological block may be able approximate functions, but we don’t know how
well is its approximation capability (Supplementary material provides an empirical study on
this). However, with two morphological blocks (applied sequentially) any function can be
approximated.

Lemma 1. Any linear combination of hinge functions ∑
m
i=1 αih(ki)(xxx) can be represented

over an arbitrary compact set K as a two sequential morphological block consisting of dila-
tion neurons only.
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Dataset Test Accuracy

Morph-Net Soft Morph-Net (β = 8) Similar Network

MNIST 98.39 98.90 99.79 [22]
Fashion-MNIST 89.87 89.84 89.70 [24]

Table 1: Accuracy on MNIST and Fashion-MNIST Datasets using a single hidden layer with
400 morphological neurons.

Proof. The proof is given in the supplementary material.

Theorem 2 (Universal approximation). Two morphological blocks applied sequentially, can
approximate continuous functions over arbitrary compact sets.

Proof. Continuous functions can be approximated over compact sets by sums of hinge func-
tions (Theorem 3.1 of [2]). Therefore, by Lemma 1, it follows that any continuous function
can be approximated over arbitrary compact sets by two-layer Morph-Nets.

4 Experimental Evaluation
To empirically evaluate the performance of our proposed Morphological block, we have
done experiments using various benchmark datasets of several real-world problems. We have
compared our results with similarly structured networks because the state-of-the-art methods
employ more than just simple neurons to accomplish the results. Also, since our proposed
morphological block utilizes 1D morphological operations, the comparison has been done
with networks with 1D neurons. So, all the data has been flattened before feeding to the
networks. Because of these reasons, we have evaluated our method on MNIST, Fashion-
MNIST [24], CIFAR-10, and SVHN dataset only. We have refrained from using large image
datasets as a 1D version of the operators won’t be able to extract meaningful features from
them. Yes, using the 2D version of the morphological operations would indeed be more ap-
propriate for image data, but here our focus is the evaluation of our proposed morphological
block, not its 2D version.

4.1 MNIST and Fashion-MNIST
For MNIST and Fashion-MNIST [24] dataset, the network we have utilized contains an input
layer and a single morphological block. Only a sigmoid activation has been utilised in the
last layer, no other activation function has been used. The morphological block contains 200
dilation and 200 erosion neurons. Table 4.1 shows the accuracy of test data after training the
network for 300 epochs. We get an average accuracy of 98.43% and 89.84%, respectively,
on MNIST and Fashion-MNIST datasets. Note that the reported state-of-the-art techniques
make use of different data augmentation and pre-processing techniques to train the data. We
have not utilized any of such techniques, but still, we are able to get comparable results.

4.2 CIFAR-10 and SVHN
CIFAR-10 [10] and SVHN [14] are two popular classification datasets that are far more
challenging than the previous two. All the networks we have utilized here to report the
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Architecture l=200 l=400 l=600

CIFAR10 SVHN CIFAR10 SVHN CIFAR10 SVHN

NN-tanh 46.6 ± 0.06 73.9 ± 0.12 46.9 ± 0.04 73.9 ± 0.23 48.0 ± 0.05 75.6 ± 0.14
NN-ReLU 47.2 ± 0.11 64.2 ± 0.88 48.0 ± 0.05 76.2 ± 0.32 48.1 ± 0.02 79.5 ± 0.11
Maxout-Network
(k = 2) [7] 46.9 ± 0.05 69.4 ± 0.10 48.0 ± 0.10 74.1 ± 0.22 46.4 ± 0.33 37.8 ± 3.15

Our 52.0 ± 0.02 73.4 ± 0.03 53.6 ± 0.01 76.9 ± 0.03 54.0 ± 0.02 78.2 ± 0.03
Our (Soft: β = 12,
20) 53.5 ± 0.04 74.1 ± 0.06 55.8 ± 0.05 77.0 ± 0.05 56.9 ± 0.04 78.5 ± 0.05

Table 2: Test accuracy achieved on CIFAR-10 and SVHN dataset by different networks
when the number of neurons (l) in the hidden layer is varied. The value of β is 12 and 20 for
CIFAR10 and SVHN respectively.

results, follow a 3-layer architecture: input layer, hidden layer and output layer. For the
Maxout network [7], we have taken k = 2 which means each hidden neuron has two extra
nodes over which the maximum is computed. For the network with (soft) morphological
neurons, sigmoid activation has been utilized only in the last layer. Table 4.2 shows the
mean and standard deviation of test accuracy obtained over 5 runs of 300 epochs each and
by varying the number of neurons in the hidden layer. It is seen from the table that the
Morph-Nets achieve better accuracy for the CIFAR-10 dataset in all cases. However, for the
SVHN dataset, its results are comparable with that of other networks. But for both datasets,
the accuracy obtained by Morph-Net stays almost the same across training runs. That is not
true for other networks.

5 Conclusion
In this paper, we have theoretically analysed the morphological neurons and have shown that
our proposed morphological block is a good way to arrange morphological neurons. We have
also shown, that a morphological block represents a sum of hinge functions and two mor-
phological blocks can approximate any continuous function. This provides the theoretical
basis that networks built with morphological neurons are equally capable and it is applicable
to a variety of problems. The empirical results also show the applicability of morphological
neurons. But there is huge scope for further explorations. Firstly, the networks build with
morphological neurons (or morphological blocks) are very slow to train since only a small
number of parameters are updated at each iteration (Remember that the gradient is 1 only
where the max/min occurs). So, it may also require more number iterations to converge.
Improvements in this regard will greatly boost the scope for further exploration. Secondly,
to facilitate theoretical analysis, we have restricted ourselves to the 1D version of the mor-
phological operations. This can be easily extended to 2D morphological operations to make
CNN-like networks, but to compete with the state-of-the-art networks other advanced layers
(e.g. batch norm, drop-out) may need to be adapted for morphological neurons.
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