
Mathematical morphology provides powerful nonlinear tools that are suitable for 
visual tasks. However, devising a sequence of operation and their parameters for a 
given problem is not straightforward and requires expert knowledge. So, efforts have 
been made to automatically learn their parameters from data. ese learnable 
structures are termed morphological neurons. It has been shown, that the applicability 
of morphological neurons is not just limited to visual tasks, they are also effective for 
classification [1,2] and regression [3]. But the literature lacks their thoretical analysis 
for practical purposes. So, in this work we have theoretically analysed the properties 
of morphological neurons and shown that a specific arrangement of the neurons can 
approximate any continuous function. To be more precise, we have defined a structure 
called a Morphological Block and shown that a sequence of two morphological blocks 
can work as a universal approximator. However, to facilitate the theoretical analysis, 
we have restricted ourselves to the 1D version of the morphological operators, where 
the operators work over the whole input at once, not locally. 

Motivation
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Morphological block : A sum of hinge functions

Dilation and Erosion Neuron

Results

Morphological Block

Erosion Neurons

g1(x) g2(x) gc(x)

z1
⊕

zn
⊕

z1
⊖

zm
⊖

x1 x2 xd xd+1
⊕

Dilation Neurons
⊖

Fig 1. Architecture of a single layer 
morphological block. It contains an input 
layer, a dilation-erosion layer with n 
dilation and m erosion neuron and a 
linear combination layer with c neurons 
producing the output. Fig 2. Decision boundaries learned by different networks with two hidden neurons. 

Two Morphological Blocks: 
An universal approximator

Equivalence of configurations

(a) NN-ReLU 
network is 
able to learn 
only two 
planes. 

(b) Maxout 
network is 
able to learn 
two more 
planes with 
the help of 
additional 
parameters. .

(d) Soft 
Morpho-
logocal 
block, 
smooths the 
learned 
decision 
boundary.

(c) Morpho-
logical Block 
learns more 
planes with 
the same 
number of 
parameters 
as NN-ReLU.
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