Morphological Network: How Far Can We Go with Morphological Neurons?
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Motivation Equivalence of configurations

An universal approximator

Mathematical morphology provides powerful nonlinear tools that are suitable for Lemma 1. Any linear combination of hinge functions 37", o;h\¥?) (a) can be represented over

Theorem 1. If we denote D,,,, E/,,,, as a layer with m, dilation neurons and mo erosion neurons
an arbitrary compact set K as a two sequential morphological block consisting of dilation neurons

and L as a linear combination layer, the following may be said about their configurations.

given problem is not straightforward and requires expert knowledge. So, efforts have only.
(i) The architecture D,,, Ey — D, Eg — -+ — Dy, consisting only of dilation layers

is equivalent to the architecture D,,, Ey with a single dilation layer. A similar statement is
true if one considers architectures with only purely erosion layers.

visual tasks. However, devising a sequence of operation and their parameters for a

been made to automatically learn their parameters from data. These learnable Theorem 2 (Universal approximation). Two morphological blocks applied sequentially, can ap-

structures are termed morphological neurons. It has been shown, that the applicability proximate continuous functions over arbitrary compact sets.

of morphological neurons is not just limited to visual tasks, they are also effective for
Proof. Continuous functions can be approximated over compact sets by sums of hinge func-

tions (Theorem 3.1 of [7]). Therefore, by Lemma 1, it follows that any continuous function can
be approximated over arbitrary compact sets by two-layer Morph-Nets. []

(ii) The architecture D1 Ey — D1 is not equivalent to D1 FEy. Similarly, it is not equivalent to

classification [1,2] and regression [3]. But the literature lacks their thoretical analysis
Do E, and, consequently, the architectures D1y — D1 FE; and D1 FE, are not equivalent.

for practical purposes. So, in this work we have theoretically analysed the properties

of morphological neurons and shown that a specific arrangement of the neurons can (iii) The architecture D1 E; — Dy — L is not equivalent to D1 Ey — L.

approximate any continuous function. To be more precise, we have defined a structure

called a Morphological Block and shown that a sequence of two morphological blocks (iv) The architecture Dy Lig — Dol — Dy is not equivalent to Dy ig — D

Results

can work as a universal approximator. However, to tacilitate the theoretical analysis,

we have restricted ourselves to the 1D version of the morphological operators, where

the operators work over the whole input at once, not locally. Test Accuracy

Morphological block : A sum of hinge functions

Dataset
Morph-Net Soft Morph-Net (3 = 8) Similar Network
oo . MNIST 98.39 98.90 99.79 [4]
Dllatlon and Er 0S1011 N curon Definition 1 (k-order Hinge Function [7). | A k-order hinge function (k) () consists of (k+1) Fashion-MNIST 89 87 89.84 89.70 [5]

hyperplanes continuously joined together. It may be defined as

Table 1: Accuracy on MNIST and Fashion-MNIST Datasets using a single hidden layer with

(k) () =+ maX{’wriFCU + by, ’wgfv + ba, ... ,wzﬂlw + brg1} (1) 400 morphological neurons.

Given an input © € R? and a structuring element s € R9, the operation of dilation (®)

and erosion (©) neurons are defined, respectively, as
Proposition 1. The function computed by a Morphological Block (denoted by M (x)) with n

Trds—= mgx{xk + Sk}, (1) dilation and m erosion neurons followed by their linear combination, is a sum of multi-order Architect 1=200 1=400 1=600
hinge functions. renectre
xS s = min { T — Sk}a (2) g f CIFAR10 SVHN CIFAR10 SVHN CIFAR10 SVHN
K In fact, we can show that NN-tanh 46.6 +£0.06  73.9+£0.12 469 +0.04 73.9+023 48.0+0.05 75.6 =+ 0.14
h d ‘ kth 1 t ofi ‘ : In th the structur; 1 ¢ ( ) [ NN-ReLU 47.2 £ 0.11 64.2 = 0.88 48.0 :0.05 76.2+0.32 481 +0.02 79.5+0.11
where z; denotes k" element of input vector x. In these neurons, the structuring element (s M) — (d) Maxout-Network
. . . T) = ah:(x 2
is learned in the training phase. ( ) ; (ARd) ( )7 ( ) (k = 2) [6] 469 +0.05 6944+0.10 48.0+0.10 741+0.22 464 +033 37.84 3.15
The max and min operators used in the dilation and erosion neurons are only piece-wise Our 52.0 +£0.02 73.4+0.03 53.6+001 769+003 54.040.02 78.2 =+ 0.03
differentiable. To overcome this problem we propose to use the soft version of max and min wherel = m+n, a; € {1,—1} and h,gd) (x),1 <1 <, are d-order hinge functions. The proof g(;;r (Soft: 5 =12, 0o 004 741+ 006 558005 770005 56.9-L004 785005
to define soft dilation and soft erosion neurons as follows. is given in the supplementary material.
| Table 2: Test accuracy achieved on CIFAR-10 and SVHN dataset by different networks when
x'Ds’ = — log Z ek tsk)B | (3) the number of neurons () in the hidden layer is varied. The value of 5 is 12 and 20 for CIFAR10
g k+1 Legend: mm Class 1 wm Class 2 and SVHN respectively.
pa, 1 (5! —21) (a) NN-ReLU * (b) Maxout
m@s——glog Ze k : (4) fwork ; cwork i
network 1s 1o network 1s
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Fig 2. Decision boundaries learned by different networks with two hidden neurons.

producing the output.



