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1 Gradient of Soft maximum
The derivative of soft dilation and erosion operation may be defined as follows.

δ (xxx⊕̂sss)
δ sk

=
e(xk+sk)β

∑i e(xi+si)β
(1)

δ (xxx⊖̂sss)
δ sk

=
e(sk−xk)β

∑i e(si−xi)β
(2)

2 Equivalence of Configurations
In this section, we prove that some of the arrangements of morphological neurons are equiv-
alent and can be approximated by using a fewer number of neurons. To be able to do that,
we first prove a simple lemma.

Lemma 1. Suppose f and g are real-valued functions on Rd . Then f = g if and only if, for
all r ∈ R, one has equality of the sub-level sets:

f−1(−∞,r] = g−1(−∞,r].

Proof. The “only if” part is trivial. As for the “if” part, note that we have

f−1{r}=
⋂
n≥1

f−1(r−1/n,r] =
⋂
n≥1

( f−1(−∞,r]\ f−1(−∞,r−1/n]).
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The same goes for g, and so, by our hypothesis,

f−1{r}= g−1{r} for all r ∈ R.

Therefore, for any x ∈ Rd , we have x ∈ g−1{g(x)}= f−1{g(x)}, or, in other words, f (x) =
g(x).

Theorem 1. If we denote Dm1Em2 as a layer with m1 dilation neurons and m2 erosion neu-
rons and L as a linear combination layer, the following may be said about their different
configurations.

(i) The architecture Dm1E0 → Dm2E0 → ·· · → Dmℓ
E0 consisting only of dilation layers is

equivalent to the architecture Dmℓ
E0 with a single dilation layer. A similar statement is

true if one considers architectures with only purely erosion layers.

(ii) The architecture D1E1 → D1 is not equivalent to D1E0. Similarly, it is not equivalent to
D0E1, and, consequently, the architectures D1E1 → D1E1 and D1E1 are inequivalent.

(iii) The architecture D1E1 → D1 → L is not equivalent to D1E0 → L.

(iv) The architecture D2E0 → D0E2 → D1 is not equivalent to D2E0 → D1.

Proof. (i) Let x ∈ Rd be the input to the network. Let there be two networks N1 and N2. Let
there be m1 and m2 dilated neurons in, respectively, the first and the second layers of Network
N1. Let the parameters of the network N1 in the first layer and 2nd layer are w1 ∈ Rd×m1 and
w2 ∈ Rl1×l2 respectively. Whereas let there is only a single layer with m1 number of dilated
neurons in network N2 and the parameters are denoted as u ∈ Rd×m2 . Let f (x) ∈ Rm2 and
g(x) ∈ Rm2 are the output from the last layer of network N1 and N2 respectively.

For Network N1

y j = max
i
(xi +w1

i, j) ∀ j ∈ {1,2, ..m1} (3)

fk(x) = max
j
(y j +w2

j,k) ∀ j,k (4)

For network N2

gk(x) = max
j
(x j +u2

j,k) ∀k, j (5)

Let

Sk
f = {x | fk(x)≤ ek;ek ∈ R} (6)

Sk
g = {x | fk(x)≤ ek;ek ∈ R} (7)

For Network N1

fk(x)≤ ek; ∀k (8)

yi +w2
i, j ≤ ek ∀k, j (9)

yi ≤ ek −w2
i, j ∀k, j (10)
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From equation 3 and equation 10 we get

max
i
(xi +w1

i, j)≤ ek −w2
i, j ∀k, j (11)

xi +w1
i, j ≤ ek −w2

i, j ∀k, j, i (12)

xi ≤ ek −w2
i, j −w1

i, j ∀k, j, i (13)

Which means

xi ≤ min
j
(ek −w2

i, j −w1
i, j) ∀k, i (14)

xi ≤ ek −max
j
(w2

i, j +w1
i, j) ∀k, i (15)

For network N2

gk(x) = max
j
(x j +u2

j,k) (16)

xi ≤ (ek −ui,k)∀k, i (17)

To hold the set Sk
g is equal to Sk

f to ∀k

ui,k = max
j
(w2

i, j +w1
i, j)∀i,k (18)

Hence, from Lemma 1, given a parameter w1 and w2 of and 2 layer network N1, there exist
a equivalent single-layer network N2 with dilated neurons u which can represent the same
function.From the equation 18 we can see the parameters of the single-layer network can
be constructed considering the longest path from input to output. Recursively we can say
it holds for multiple layers. A similar argument can be given in the case of erosion layers.
Hence Dm1E0 → Dm2E0 → ··· → Dmℓ

E0 proved

(ii) For simplicity, we will assume 2-dimensional input. Suppose that the outputs from the
first layer are f1(x,y) and g1(x,y) where f1 is the output of a dilation neurone and g1 is the
output of an erosion neurone (see Figure 1). We write

f1(x,y) = max{x+a,y+b}, g1(x,y) = min{x+ c,y+d}.

After the second layer consisting of a single dilation neurone, we get the output

f2(x,y) = max{ f1 +a1,g1 +b1}.

Note that

f2(x,y)≤ e ⇐⇒ f1 +a1 ≤ e and g1 +b1 ≤ e

⇐⇒ f1 ≤ e−a1 and g1 ≤ e−b1

⇐⇒ (x+a ≤ e−a1 and y+b ≤ e−a1) and (x+ c ≤ e−b1 or y+d ≤ e−b1)

⇐⇒ (x,y) ∈ (−∞,γ1]× (−∞,γ2]∩ ((−∞,γ3]×R∪R× (−∞,γ4])

⇐⇒ (x,y) ∈ (−∞,γ1 ∧ γ3]× (−∞,γ2]∪ (−∞,γ1]× (−∞,γ2 ∧ γ4].
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Figure 1: A network of architecture D1E1 → D1

Note that γ1 ≤ γ3 ⇐⇒ a1 + a ≥ b1 + c and γ2 ≤ γ4 ⇐⇒ a1 + b ≥ b1 + d. Therefore, if
a1 +a ≥ b1 + c and a1 +b ≥ b1 +d, then

f−1
2 (−∞,e] = (−∞,γ1]× (−∞,γ2].

Thus in this case f2 can be realized in the architecture D1E0.
If, however, a1 +a < b1 + c and a1 +b < b1 +d, then

f−1
2 (−∞,e] = (−∞,γ3]× (−∞,γ2]∪ (−∞,γ1]× (−∞,γ4],

which is not realizable as the sublevel set of a function of D1E0 architecture.

(iii) The proof is a simple modification of the proof of (ii). For α > 0,

α f2(x,y)≤ e ⇐⇒ f1 +a1 ≤
e
α

and g1 +b1 ≤
e
α

⇐⇒ f1 ≤
e
α
−a1 and g1 ≤

e
α
−b1

⇐⇒ (x+a ≤ e
α
−a1 and y+b ≤ e

α
−a1)

and (x+ c ≤ e
α
−b1 or y+d ≤ e

α
−b1)

⇐⇒ (x,y) ∈ (−∞,γ1]× (−∞,γ2]∩ ((−∞,γ3]×R∪R× (−∞,γ4])

⇐⇒ (x,y) ∈ (−∞,γ1 ∧ γ3]× (−∞,γ2]∪ (−∞,γ1]× (−∞,γ2 ∧ γ4].

Note that γ1 ≤ γ3 ⇐⇒ a1 +a ≥ b1 + c and γ2 ≤ γ4 ⇐⇒ a1 +b ≥ b1 +d.
Therefore, if a1 +a ≥ b1 + c and a1 +b ≥ b1 +d, then

(α f2)
−1(−∞,e] = (−∞,γ1]× (−∞,γ2].

Thus in this case f2 can be realized in the architecture D1E0 → L.
If, however, a1 +a < b1 + c and a1 +b < b1 +d, then

(α f2)
−1(−∞,e] = (−∞,γ3]× (−∞,γ2]∪ (−∞,γ1]× (−∞,γ4],
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which is not realizable as the sublevel set of a function of D1E0 → L architecture.
Sub-level sets of the D1E0 → L architecture. For β > 0

β max{x+u,y+ v} ≤ e ⇐⇒ x ≤ e
β
−u and y ≤ e

β
− v. (19)

Equating e
β
− u = e

α
− a1 − a, e

β
− v = e

α
− a1 − b, we can see that one can take β =

α,u = a+a1,v = b+a1 to realize the function α f2 in the D1E0 → L architecture.
(iv) It can be proved in the same way as (ii)

3 Proof of Proposition 1: Morphological block as a sum of
hinge functions

Proposition 1. The function computed by a single morphological block with n dilation and
m erosion neurons followed by a linear combination layer computes M(xxx), which is a sum
of multi-order hinge functions.

Proof. As defined in the main paper the computed M(xxx) has the following form.

M(xxx) =
n

∑
i=1

ω
+
i z+i +

m

∑
j=1

ω
−
j z−j , (20)

where z+i and z−j are the output of ith dilation neuron and jth erosion neuron, respectively
and ω

+
i and ω

−
j are the weights of the the linear combination layer. Replacing the z+i and z−j

with their expression, the equation becomes the following.

M(xxx) =
n

∑
i=1

ω
+
i max

k
{x′k + s+ik}+

m

∑
i=1

−ω
−
i max

k
{s−ik − x′k}, (21)

where s+ik and s−ik denote the kth component of the ith structuring element of dilation and
erosion neurons, respectively. The above equation can be further expressed in the following
form,

M(xxx) =
n

∑
i=1

α
+
i max

k
{θ i+x′k +ρ

+
ik }+

m

∑
i=1

α
−
i max

k
{θ

−
i x′k +ρ

−
ik }, (22)

Where θ
+
i , θ

−
i , ρ

+
ik and ρ

−
ik are defined in the following way

θ
+
i =

{
ω

+
i if ω

+
i ≥ 0

−ω
+
i if ω

+
i < 0

θ
−
i =

{
−ω

−
i if ω

−
i ≥ 0

ω
−
i if ω

−
i < 0

ρ
+
ik =

{
s+ikω

+
i if ω

+
i ≥ 0

−s+ikω
+
i if ω

+
i < 0

ρ
−
ik =

{
s−ikω

−
i if ω

−
i ≥ 0

−s−ikω
−
i if ω

−
i < 0

α
+
i =

{
1 if ω

+
i ≥ 0

−1 if ω
+
i < 0

α
−
i =

{
−1 if ω

−
i ≥ 0

1 if ω
−
i < 0

Now, without any loss of generality, we can write equation 22 as follows

M(xxx) =
m+n

∑
i=1

αi max
k

(θix′k +ρik) (23)
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where

θi =

{
θ i+ if i ≤ n
θ
−
i−n if n < i ≤ m+n

ρik =

{
ρ
+
ik if i ≤ n

ρ
−
(i−n)k if n < i ≤ m+n

αi =

{
α
+
i if i ≤ n

α
−
(i−n) if n < i ≤ m+n

Finally, we can rewrite equation 23 as

M(xxx) =
l

∑
i=1

αiφi(xxx), (24)

where l = m+n, αi ∈ {1,−1} and φi(xxx)’s are of the following form

φi(xxx) = max
k

(vvvT
ikxxx′+ρik), (25)

with

vikt =

{
βi if t = k
0 if t ̸= k

(26)

In equation 25, vvvT
ikxxx′+ρik is affine and αiφi(xxx) is a d-order hinge function. Hence ∑

l
i=1 αiφi(xxx)

i.e., M(xxx) represents sum of multi-oder hinge function.

4 Number of Hyperplanes
Since a morphological block computes a sum of hinge functions, it can potentially learn a
large number of hyperplanes. The function M(xxx) learned by a single-layer Morphological
network may also be expressed in the following form:

M(xxx) =
l

∑
i=1

αi max
k

{θkxk +ρik}, (27)

where αi, θk, ρik ∈ R. We see that M(xxx) is a sum of l functions, each of which computes
max over the linearly transformed elements of xxx. Since the max is computed over the (trans-
formed) elements of xxx, each max operation selects only one element of xxx. So, the computed
M(xxx) may not contain all the elements of xxx and the index (k) of the selected element varies
depending on the input and the structuring element. However, if l > d, M(xxx) may contain
all the elements of xxx. So equation 27 can be rewritten as

M(xxx) = α1(θ1xk1 +ρ1k1)+α2(θ2xk2 +ρ2k2)+ · · ·+αl(θlxkl +ρlkl ). (28)

where xki represents any one of the d + 1 elements of xxx selected by i-th neuron by max
operation depending on structuring element sssi. So each xki is chosen from d + 1 elements.
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Therefore, depending on which element of xxx gets selected by each neuron, M(xxx) forms one
of the (d + 1)l − 1 hyperplanes. The −1 occurs in the number of hyperplanes because on
one occasion only limiter or bias is selected. Note that some of these hyperplanes must be
parallel to some axes. For M(xxx) to form a hyperplane that is not parallel to any of the axes,
all elements of xxx must get selected by some max functions or other. This occurs in d!×

( l
d

)
ways. The remaining l −d number of elements xki ’s are repeat selection by some functions.
So, there can be almost d!×

( l
d

)
×(d +1)l−d hinging hyperplanes that are not parallel to any

of the axes.

5 One morphological block and function approximation
A single morphological block represents a sum of hinge functions. However, it is not clear if
all hinge functions can be represented by a single morphological block. In a numerical study,
we have tried to approximate the hinge function max(x+ y,0) using a single morphological
block by varying the number of dilation/erosion neurons. We have generated values of the
function in the square [−5,5]× [−5,5], and trained the network with mean squared error
(MSE) loss. In Figure 2, we have plotted the MSE loss (after convergence) against the num-
ber of morphological neurons used. It is seen that a single morphological block is unable to
reduce the error unless we use additional bias or limiter terms in the morphological neurons.
However, we do not know theoretically if having additional bias terms in morphological
operations help in universal approximation.

Morphological Neurons

0.00

0.25

0.50

0.75

1.00

1.25

2 4 6 8 10 12 14 16

Loss-without bias Loss-with bias

Loss-without bias and Loss-with bias

Figure 2: Graph of approximation loss with varying morphological neurons in a single mor-
phological block.

6 Universal Approximation by two Morphological blocks
Here we have shown that two sequential Morphological blocks can approximate any con-
tinuous functions. First, we have shown that any hyperplane can be represented by a single
morphological block. After that, we have shown the universal approximation using two
morphological blocks.
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Lemma 2. Let K be a compact subset of Rd . Then, over K, any hyperplane w⊤xxx+b can be
represented as an affine combination of d dilation neurons which only depend on K.

Proof. Since we are in a compact set, there exists C > 0 such that |xℓ| ≤C for any 1 ≤ ℓ≤ d.
Where xℓ is each element of xxx. Take

sℓ =−3C1d +3Ceℓ,d ,1 ≤ ℓ≤ d,

where 1d is the vector of all ones and eℓ,d is the ℓ-th unit vector in Rd . Then all but the ℓ-th
coordinate of sℓ are −3C, while the ℓ-th coordinate is 0. Then note that, for any xxx ∈ K, and
1 ≤ ℓ≤ d,

xℓ+ sℓ,ℓ = xℓ ≥−C >−2C =C−3C

≥ x j −3C = x j + sℓ, j,

for any j ̸= ℓ. It follows that for any x ∈ K, and 1 ≤ ℓ≤ d,

xxx⊕ sℓ = xℓ.

Now given any hyperplane w⊤xxx+b, we can express it exactly as a linear combination of
dilation neurons over K:

w⊤xxx+b =
d

∑
ℓ=1

wℓxℓ+b =
d

∑
ℓ=1

wℓ(xxx⊕ sℓ)+b.

This completes the proof.

Lemma 3 (lemma 1 of main paper). Any linear combination of hinge functions ∑
m
i=1 αih(ki)(xxx)

can be represented over any compact set K as a two sequential morphological block consist-
ing of dilation neurons only.

Proof. Let B = max1≤i≤m supxxx∈K |h(ki)(xxx)|. We now give the architecture of the desired
Morph-Net.

1. The first dilation-erosion layer has exactly d dilation neurons given by xxx⊕sℓ,1≤ ℓ≤ d.

2. The first linear combination layer has k = ∑
m
i=1(ki +1) neurons, with the i-th block of

(ki + 1) neurons outputting the constituent hyperplanes of h(ki)(xxx). This can be done
by Lemma 2.

3. The second dilation-erosion layer just has m dilation neurons, each outputting a hinge
function. The ℓ-th neuron is constructed as follows: Write any yyy∈Rk as (yyy⊤1 , . . . ,yyy

⊤
m)

⊤

where yyy j = (y j,1, . . . ,y j,k j+1)
⊤. We want the output of the ℓ-th neuron to be

max1≤v≤kℓ+1 yℓ,v. So we take tttℓ = (ttt⊤ℓ,1, . . . , ttt
⊤
ℓ,m)

⊤, where tttℓ, j = −3B1k j+1 for j ̸= ℓ,
and tttℓ,ℓ = 0kℓ+1. Then, for any j ̸= ℓ, 1 ≤ u ≤ k j +1, and 1 ≤ v ≤ kℓ+1, we have

y j,u + tℓ, j,u = y j,u −3B ≤ B−3B

=−2B

<−B

≤ yℓ,v = yℓ,v + tℓ,ℓ,v.

It follows that yyy⊕ tttℓ = max1≤v≤kℓ+1 yℓ,v. With this construction, the outputs of the
second dilation-erosion layer are the m numbers h(ki)(xxx).
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4. The second linear combination layer just has a single neuron that combines the outputs
of the previous layer in the desired way:

zzz 7→
m

∑
i=1

αizi.

This completes the proof.

7 Results

7.1 HIGGS Dataset
Here also show some results on the Higgs dataset. Here the performance of the morpholog-
ical block is not so good, but this could provide some hint towards improving the perfor-
mance.
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Figure 3: Results on Higgs dataset

7.2 CIFAR10 and SVHN
A few results of CIFAR10 and SVHN dataset by varying number of neurons is given in
figure 4 and figure 5.
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(a) Bar graph (b) Test error vs epochs
Figure 4: Results on CIFAR10 dataset, varying number of neurons in the hidden layer: l=200
(1st row), l=400 (2nd row), l=600 (3rd row)
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Figure 5: Results on SVHN dataset, varying number l=200 (1st row), l=400 (2nd row), l=600
(3rd row)


