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Abstract

Generative models for 2D images has recently seen tremendous progress in qual-
ity, resolution and speed as a result of the efficiency of 2D convolutional architectures.
However it is difficult to extend this progress into the 3D domain since most current
3D representations rely on custom network components. This paper addresses a central
question: Is it possible to directly leverage 2D image generative models to generate 3D
shapes instead? To answer this, we propose XDGAN, an effective and fast method for
applying 2D image GAN architectures to the generation of 3D object geometry combined
with additional surface attributes, like color textures and normals. Specifically, we pro-
pose a novel method to convert 3D shapes into compact 1-channel geometry images and
leverage StyleGAN3 and image-to-image translation networks to generate 3D objects in
2D space. The generated geometry images are quick to convert to 3D meshes, enabling
real-time 3D object synthesis, visualization and interactive editing. Moreover, the use of
standard 2D architectures can help bring more 2D advances into the 3D realm. We show
both quantitatively and qualitatively that our method is highly effective at various tasks
such as 3D shape generation, single view reconstruction and shape manipulation, while
being significantly faster and more flexible compared to recent 3D generative models.

1 Introduction
Generative Adversarial Networks [15] have achieved remarkable progress in generating
high-resolution realistic images, typically using convolutional architectures such as [5, 23].
Extending these advances to the 3D domain remains a challenge and an active area of re-
search, with newest methods introducing implicit or explicit 3D awareness into the GAN
generative process [7, 8, 17, 34, 55]. In this work, we show that it is possible to directly
leverage a 2D GAN architecture designed for images to generate high-quality 3D shapes.
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Figure 1: XDGAN allows generation of high-resolution textured 3D meshes, supports pro-
jection of 3D models into the latent space, where generation of multiple textures and seman-
tic editing are possible. Results from the model trained with HQCars dataset.
The key to our approach is parameterization of 3D shapes as 2D planar geometry images
[18], which we use as the training dataset for an image-based generator.

Perhaps one of the greatest challenges to the development of generative models for 3D
content is converging on the right representation. Direct extension of 2D pixel grids to 3D
voxel grids [50] suffers from high memory demands of 3D convolutions, limiting resolution.
Point cloud samples of surface geometry, while popular for generative tasks [2, 6, 28], are
limited in their ability to model sharp features or high-resolution textures. Recently implicit
3D representations, such as NeRF [33] and DeepSDF [35], as well as hybrids, have shown
great promise for generative tasks [7, 11, 52]. However, these approaches typically are
too slow for interactive applications and their output does not interface with existing 3D
tools, calling for costly or lossy conversion of models before use. To this date, 3D meshes,
augmented with normals and textures, remain the most widely adopted 3D representation in
3D software, movies and games. Our method uses 2D generative architectures to produce
fixed-topology textured meshes with a single forward pass, and is thus immediately practical.

We present XDGAN (X-Dimensional GAN), a method for using standard fast 2D GAN
architectures for generating high-resolution 3D meshes with additional surface properties
like textures and normals. XDGAN is trained on a collection of 3D shapes, which are first
unwrapped into planar geometry images. Each pixel of a geometry image represents a vertex
position of a fixed topology mesh, and is thus a direct representation of surface geometry.
To our knowledge, ours is the first work to show that 2D convolutional generators can pro-
duce high-fidelity 3D shapes by operating on planar parameterization of 3D geometry, an
idea that can help bring more advances in 2D architectures to the 3D realm. Specifically, we
experiment with StyleGAN [23, 24] modified to train on higher-precision geometry images
that represent 3D shapes. In order to augment generated geometry with additional per-vertex
properties, we show that it is possible to directly apply an image-to-image translation frame-
work [36] to predict these properties for each geometry image. We demonstrate that our
approach can generate diverse, high-quality textured 3D meshes, beating existing generators
in quality of surface detail, presence of color or practical usefulness of output representa-
tion. Further, we demonstrate that powerful properties of the StyleGAN latent space can
also be exploited for 3D generation, reconstruction, as well as supervised and unsupervised
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Representations
Voxels Points Implicit Mesh
[47, 54] [31] [11, 19, 35] [45] [48] [16] Ours

Real-time generation ✓ ✓ ✗ ✓ ✓ ✓ ✓

Real-time rendering ✓ ✓ ✗ ✓ ✓ ✓ ✓

High-quality surface ✗ ✗ ✓ ✗ ✗ ✗ ✓

Texture ✗ ✗ ✗ ✗ ✗ ✓ ✓

Variable topology ✓ ✓ ✓ ✗ ✗ ✓ ✗

Table 1: Comparison of 3D generative methods by the representation used. We include
quantitative and qualitative comparisons with the starred methods in our experiments.

manipulation, just as it has been shown for 2D images.

2 Related Work
Generative Adversarial Networks (GANs) have become a popular technique for image gen-
eration since their introduction by Goodfellow et al. [15]. Striking progress in the quality
and resolution of GAN-generated images has been achieved in recent years [5, 22, 23, 24],
including in conditional settings [36]. While some degree of view control of such models has
been exploited for downstream 3D tasks [56], these architectures have remained primarily
confined to generation in the 2D domain. Most recently, approaches that leverage an inter-
mediate 3D representation to improve 3D consistency and view control of GANs have also
been proposed [4, 7, 8, 17, 34]. Our method is orthogonal to this line of work as we show that
it is possible to leverage unmodified 2D GAN architectures, to learn 3D geometry directly.
Beyond unconditional generation, latent spaces of large-scale GANs have been successfully
used for both coarse and fine-grained manipulations of images. While some techniques focus
on editing real images [1, 3, 26, 30, 40], others devise meaningful exploration of the GAN
latent space. Supervised approaches typically use pre-trained attribute classifiers to optimize
edit directions [14, 43, 44]. Other works show that it is possible to find meaningful directions
in latent space in an unsupervised way [20, 21, 49]. In our work, we use a modified version
of InterFaceGAN [44] to demonstrate how latent space manipulation techniques, originally
proposed for 2D image manipulation, can be leveraged for 3D generation as well.

While there have been remarkable advances in 3D shape generation in the recent years,
deployment of 3D generative models poses challenges due to generation quality and speed,
as well as compatibility of the output format with downstream tasks (see Tb.1 for summery).

The most direct 3D analog of the 2D pixel array is the 3D voxel grid, and early generative
approaches adapted convolutional architectures to generate objects by operating on this 3D
grid [50, 51]. Due to fixed resolution of the voxel grid and high memory demands of 3D
convolutions these approaches are limited to low quality outputs. Later methods mitigate
high memory requirements, for example, by using octrees to represent the 3D space more
efficiently [47] or through local generation [54], but are still constrained in their ability to
represent high-resolution smoothly varying geometry and texture (Tb.1, A).

Due to their simplicity, point clouds, or unordered (x,y,z) samples of surface geome-
try, are a popular representation for 3D generation [2, 6, 28], reconstruction [29] and seg-
mentation [13, 38, 39]. Despite continued progress in generative modeling of point clouds
[53, 57], they cannot overcome the inherent limitations of the representation, which cannot
model sharp surface details, or be rendered as high-fidelity textured meshes. We quanti-
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(a) Training XDGAN.

(b) Test-time generation using XDGAN.

Figure 2: Overview of XDGAN: To train our model (a), we first convert a training dataset
of textured 3D meshes into 2D geometry images with corresponding textures, normals or
any other surface attributes. Next, we train a GAN model on geometry images to generate
geometry, and an image-to-image translation network to generate X-channel attribute images
for an input geometry image. At test-time (b), feed-forward evaluation of these networks
followed by a trivial meshing step produces textured 3D output meshes in real-time.

tatively compare our method against the recently published Diffusion Point Cloud (DPC)
[31] (See also Tb.1, B). DPC proposes a probabilistic diffusion model and uses point cloud
representation of 3D shapes for shape generation, auto-encoding and shape completion.

Recently there has also been a surge in using implicit 3D representations, such as learned
signed distance functions (SDFs) [19, 35] or occupancy [11, 32]. Like point clouds and voxel
grids, these representations allow modeling varying object topology, but can also represent
high-resolution surface detail. Most related to ours among implicit methods is IM-GAN [11],
which proposes to use an implicit decoder IM-NET in conjunction with features learned by
a latent-GAN model [2] to yield a general 3D generative model. Because the outputs of this
and related methods are implicit in the network weights, high-resolution results typically
cannot be visualized or exported in real-time, requiring several seconds on state-of-the-art
GPU, and precluding interactive applications (See Tb.1, C). In addition, a number of hybrid
approaches are emerging. For example, ShapeFormer [52] employs transformers in the space
of discrete implicit shape elements to support shape completion, and DMTet [42] produces
detailed tetrahedral meshes using sparse SDF samples. While DMTet generates a mesh-
based representation quickly, like our method, it is only designed to work when conditioned
on a rough input shape, not as a general generator.

3 Methodology

Our approach leverages the power of 2D convolutional generator networks in order to gen-
erate 3D geometry. Given a training set of (optionally textured) 3D objects, we first convert
them into geometry images and corresponding normal maps, textures or other attribute maps
(§3.1). The one-channel geometry images represent vertex positions of a fixed topology
mesh, and are used to train an image-based GAN model to generate such plausible geom-
etry images (§3.2). In order to augment output with per-vertex attributes like textures and
normals, we similarly train an image-to-image translation network on these aligned attribute
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maps (§3.2). After training (Fig.2a), these two image-based generators produce detailed tex-
tured 3D meshes in real-time (§2b). Fast generation makes interactive exploration of the
GAN latent space especially attractive. Although our method generates 3D output, we reap
the benefits of latent space exploration techniques developed for the 2D domain to explore
and edit 3D shapes (§3.3).

3.1 Conversion to Geometry Images

Geometry images [18] are a representation that captures 3D surface as a 2D array of (x,y,z)
values via an implicit surface parameterization, which is a bi-directional mapping from an
object’s surface to a 2D plane. Such parameterizations are often used in computer graphics
to map 2D textures and other attributes onto a 3D surface mesh. Once the parameteriza-
tion is determined, the plane is sampled to create a 3-channel n×n image where each pixel
represents an (x,y,z) vertex location of a new geometry image mesh, which is independent
from the original object’s mesh topology or representation. The order and connectivity of
each vertex within this geometry image mesh is encoded by its pixel index, where faces
connect neighboring pixel-vertices using a regular structure. Geometry images can contain
additional channels encoding surface properties like color texture, normals, object segmen-
tation and similar. Because the same surface parameterization is used when sampling these
additional properties, all channels of the geometry image are aligned, with each pixel rep-
resenting location and other properties of the same 3D vertex. In our work, we generate
normals and texture geometry images and propose applying 2D convolutional generators to
these aligned X-channel images.

Figure 3: Generation of geometry images
from 3D data. See §3.1.

In order to map a closed 3D surface onto
a 2D plane, we need to determine seams,
make cuts across the surface to conform to
a chosen topology (e.g. disk, sphere, cylin-
der), and unwrap it onto a flat square sur-
face. Creating appropriate parameteriza-
tions that are well-suited to individual 3D
object topology and shape is an active re-
search area [18, 27, 37, 41, 46]. Since our
goal is to train a generative model, we want
to reduce the representation variability as
much as possible to allow the model to learn
the true data distribution instead of the vari-
ability in parameterizations. For this reason, we choose to work with a specific family of
spherical parameterizations, and a fixed seam structure to convert 3D shapes to geometry
images and create consistent input for training the 2D generator. We start with two realistic
assumptions about the geometry of our shapes. First, we assume that most of our 3D shapes
are symmetric, which means we only need to represent half of the shape in the geometry
image. Cutting the closed surface of the shape in half also defines an edge of the surface that
is needed for the parameterization. Second, we assume our shapes are mostly genus-zero or
close to it. This means that the surface can be mapped onto a surface of a sphere. While the
spherical projection method imposes limitations on output geometry, our aim is to explore
generation in the most consistent setting first.

Given above assumptions, we define a three step process to obtain a geometry image
from a collection of 3D shapes (Refer to Fig.3). We first scale and align all input shapes
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to ensure consistent orientation and scale and place them within the projection sphere. We
then project the surface of the shape onto a spherical domain using the normal direction of
each point on the sphere. This creates a unique mapping between each point on the sphere’s
surface and the shape’s surface. Finally, we cut the sphere in half along the symmetry axis of
the shape and map the surface of the hemisphere onto a 2D plane using a fixed, predefined
area-preserving parameterization. Because projection from the sphere onto a 3D surface has
only one degree of freedom (distance along the normal direction of the sphere, see Fig.3), we
represent the 3D location of a surface point as a single value measuring the distance (which
we call “Rad") from the origin along the projection ray, effectively reducing the degrees of
freedom of the representation from 3 channels per pixel to only 1. To compute the original
(x,y,z) coordinates of all the vertices, one only needs to multiply the Rad image by the image
representing the normals of the projection sphere, fixed for the whole dataset. In addition to
positions, we produce aligned images of normals and color textures.

3.2 Generating Geometry Images and Other Attributes
Once our training dataset is converted to Rad geometry images (§3.1), we train standard 2D
GAN architectures to produce "realistic" Rad images. The only modification required is to
adapt them to high-precision geometry images instead of the traditional 8-bit RGB images.
Specifically, we experiment using StyleGAN3 [25] for geometry generation, but nothing
suggests that our approach will not generalize to other GAN architectures (see Supplemental
for experiments with StyleGAN2 [24]). We found training over single-channel Rad images
to differ little in its stability from standard image-based GAN training.

During the generation of Rad geometry images (§3.1), we also produce aligned normal
and texture maps using the same surface parameterization. Normal maps describe the local
curvature of a 3D surface and are often used in computer graphics to add fine details to a
3D shape without adding actual geometry. To generate smooth normal maps even for shapes
with low resolution, we use the smooth shading technique which interpolates the normals
along a flat mesh triangle to give the illusion of smooth shading. The computed smooth
normals are then mapped onto a 2D image using the same parameterization. The texture
maps are generated by using an environment map around the object which can generate both
realistic lighting and reflection for the object. The result of the rendering is then baked as a
texture and mapped into a 2D image using the same procedure as with normal maps.

We use these aligned image channels to train an image-to-image translation network to
produce X attribute channel images given an input Rad image of the same resolution. Specif-
ically, we experiment with SPADE image-to-image translation network [36], but nothing in
our setup is specific to this particular network choice. We note that SPADE is designed to be
able to produce diverse outputs given a single input.

3.3 Exploiting the Latent Space
A major advantage of our 3D generative model is that it is based on standard GAN archi-
tectures, which allows us to directly apply various techniques developed for image-based
GANs. To demonstrate this, we integrate the existing technique of InterFaceGAN [44] in
order to find editing directions within our trained latent space. To this end, we first project
our training shapes into the latent space W to create a set of of projected latent vectors w with
lables (e.g. sports-car, SUV, etc.). We then train one linear SVMs for each label using these
labeled examples, and use the unit normal vector to the separation hyperplane of the SVM nT

as an editing direction in latent space. The target attribute of a real or generated 3D shape can
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then be enhanced or negated by simply steering its latent vector p along this editing direction
nT by t steps with a step size of α to produce a new latent vector p

′
= p+(α × t ×nT )

4 Experiments

We evaluate our model’s performance on shape projection, editing and single-view recon-
struction tasks. We compare our method to three state-of-the-art 3D shape generation meth-
ods that use triangular meshs (AtlasNet [16]), point-clouds (DPC [31]) and implicit repre-
sentation (IM-Net [11]). The experiments show that our method achieves significantly better
results on some object classes and competitive results on others, all while performing infer-
ence several orders of magnitude faster than the closest competitor IM-NET [11].

4.1 Datasets and Experimental Setup

For the quantitative comparisons, we use the ShapeNetV2 [9] car and airplane categories
consisting of 3509 and 4045 shapes respectively and use 10% of each set for testing. We
choose these two categories as they are sufficiently distinct structurally and demonstrate the
range of our method. Additionally, we use a proprietary new dataset consisting of 3050 high-
quality car models which we call HQCars. In addition to the higher quality of meshes, this
dataset provides high quality texture maps and semantic labels, like model, maker, year and
type, which are not available in ShapeNet.

To create our training set, we first converted the set of 3D meshes to 1-channel Rad ge-
ometry images of size 512 x 512 and the corresponding normals and texture maps. (See
Supplementary Material for comparisons with geometry images using 3 (x,y,z) channels)
We use the Rad geometry images to train a modified version of the official StyleGAN3 im-
plementation [25] to process high-precision values instead of the 8-bit RGB images. We
train this StyleGAN3-r variant without any data augmentation with batch size 8 and gamma
value of 1 for 500 epochs. To generate the additional texture and normal maps, we train
an image-to-image translation model separately for each using the official implementation
of SPADE [36], similarly modified to deal with the range and precision of geometry im-
ages. Each model is trained on aligned pairs of ground-truth geometry images and texture or
normals maps, for 300 epochs with batch size of 32.

We train our model and all baselines from scratch on the car and airplane training data
subsets separately and evaluate on the respective test subsets. We use the official Pytorch
implementations of AtlasNet, DPC and IM-Net with the default parameters.

For all experiments, we use reconstruction-based tasks and compare the generated shapes
to ground truth shapes using Chamfer distance (CD) and Earth Mover’s Distance (EMD)
metrics. CD and EMD metrics are computed by sampling 5000 points from the generated
and ground truth shapes, matching the nearest points across the sets of points and computing
their sum of Euclidean and Manhattan distances respectively. In addition to CD and EMD,
we use the Light Field Distance (LFD) [10] as a visual similarity metric. To compute LFD,
the generated and ground truth shapes are rendered from various camera angles. The ren-
dered images are then encoded using Zernike moments and Fourier descriptors to compute
similarity. Finally, we report the average inference time of ours and competing methods as
real-time generation is critical for interactive applications.
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Reconstruction error Infr. Time
Chamfer ↓ EM Dist. ↓ LFD Dist. ↓ Seconds ↓

Car Airplane Car Airplane Car Airplane Mean

AtlasNet-Sph 2.089 6.241 2.43 4.85 2610 5006 0.078
AtlasNet-25 1.786 5.216 2.22 3.94 2565 4730 0.112
IM-Net 1.439 0.406 1.49 1.06 2243 4759 13.280
DPC 6.146 4.450 4.58 4.11 - - 0.061
Ours 0.977 2.721 1.34 1.96 2407 7435 0.020

Table 2: Quantitative results on ShapeNet reconstruction. Note that the CD values are mul-
tiplied by 103 and EMD are multiplied by 102. Since DPC produces only point clouds, it is
not possible to compute the LFD distance for its outputs.

4.2 Quantitative Evaluation

For evaluating on the task of 3D shape reconstruction, we use an iterative latent projection
approach to obtain a reconstruction of ground-truth test model. We start from a randomly
sampled latent vector and iteratively compute the loss between the generated geometry image
from this vector and the ground-truth geometry image, then back-propagate the loss through
the generator to update the latent vector. We repeat this procedure for 500 iterations for each
test model. For the single-view reconstruction task, we train a ResNet-based encoder on the
rendered RGB images [12] of a ShapeNet model from a random viewpoint, and predicts a
latent vector which is then used to generate a geometry image. For both tasks, the final eval-
uation metrics are computed between the triangle mesh created from the generated geometry
image and the original ShapeNet test mesh.

Results in Table 2 show that our method achieves by far the best CD and EMD on the
car category and ranks second on the airplane category after IM-Net, while being faster by
factor of 500. This finding is not surprising, as we have made some simplifying assumptions
during conversion to geometry images (§3.1), and it is harder to map airplanes with many
sharp and spiky features onto the spherical domain than it is for relatively compact cars.
These results also demonstrate that when the 2D parameterization is appropriate (as it is for
cars), 2D generative models using our technique outperform even implicit 3D representation
models, which is an unexpected outcome. We further note that our method is the fastest by
at least a factor of 3 over any baseline. For Single-View reconstruction experiment (Table
3), the results are similar where our methods achieves very good results on the car category
while falling short from IM-Net on the airplane category.

SVR error
Chamfer ↓ EM Dist. ↓

Car Airplane Car Airplane

AtlasNet-Sph 2.335 5.514 2.558 4.917
AtlasNet-25 2.107 4.605 2.264 3.737
IM-Net 1.437 0.907 1.492 1.282
Ours 1.325 3.055 1.511 2.030

Table 3: Quantitative results on Single View Reconstruction. Note that the CD values are
multiplied by 103 and EMD are multiplied by 102.
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Input Model

AtlasNet-
Sphere

AtlasNet-25

IM-Net

Ours
(no normals)

Ours

Table 4: Qualitative Comparison of Reconstruction Results (Zoom for more details). Note
that our method can generate highest-fidelity 3D meshes including detailed surface normals.

Figure 4: The latent space of XDGAN allows meaningful latent space exploration such as
semantic editing (top, see §3.3) and interpolation between two input models (bottom).

4.3 Qualitative Results

Table 4 show 3D meshes projected with XDGAN using the method in §4.2, visually com-
pared to other competitors. Our methods generates water-tight meshes with high-fidelity that
preserve even small details like car mirrors and wheel patterns. The inclusion of generated
surface normals also add another level of detail and smoothness where needed, making the
results from XDGAN visually outstanding compared to other methods.

Furthermore, Fig.4 shows the the powerful properties of XDGAN’s latent space. Edit-
ing directions optimized using InterFaceGAN [44] (§3.3) allow semantic editing of the 3D
object in real time, for example by making a car appear sportier (Fig.4, top). The latent
space additionally allows for generating intermediates between two input models by linearly
interpolating their projected latent space vectors.

5 Conclusion

We presented XDGAN, the first method to show that 2D convolutional architectures can
be directly used for generative modeling of 3D objects with high fidelity. Our approach is
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based on a novel combination of planar image parameterization with an image-based GAN.
We show that our method generates high-quality textured 3D meshes, allows unconditional
sampling, projection, and can be used in several conditional settings. In addition, XDGAN’s
speed and convenient mesh output allow for a number of applications that can be directly
employed in practice. The shortcoming of our approach is its reliance on a fixed topology
mesh, associated with the geometry image. We believe that there are many ways future
work could mitigate this limitation, for example through part-based generation. Despite
this limitation, we have shown impressive generation results from our method, and hope
that this work may help close the gap between advances in 2D generative architectures and
comparable approaches in 3D.

6 Acknowledgments
We thank Stefan Liske and Timotheus Gmeiner from PCH Innovations GmbH for the in-
sightful discussions and making this collaboration possible. Part of this research work has
been done while Hassan Abu Alhaija was at PCH Innovations GmbH.

References
[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan++: How to edit the

embedded images? In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8296–8305, 2020.

[2] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas J. Guibas. Learn-
ing representations and generative models for 3d point clouds. In ICML, 2018.

[3] Yuval Alaluf, Or Patashnik, and Daniel Cohen-Or. Restyle: A residual-based style-
gan encoder via iterative refinement. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6711–6720, 2021.

[4] Hassan Abu Alhaija, Siva Karthik Mustikovela, Justus Thies, Varun Jampani, Matthias
Nießner, Andreas Geiger, and Carsten Rother. Intrinsic autoencoders for joint deferred
neural rendering and intrinsic image decomposition. In 2020 International Conference
on 3D Vision (3DV), pages 1176–1185. IEEE, 2020.

[5] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for
high fidelity natural image synthesis. CoRR, abs/1809.11096, 2018. URL http:
//arxiv.org/abs/1809.11096.

[6] Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun Hao, Serge Belongie, Noah
Snavely, and Bharath Hariharan. Learning gradient fields for shape generation. In
European Conference on Computer Vision, pages 364–381. Springer, 2020.

[7] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini
De Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis,
et al. Efficient geometry-aware 3d generative adversarial networks. arXiv preprint
arXiv:2112.07945, 2021.

http://arxiv.org/abs/1809.11096
http://arxiv.org/abs/1809.11096


ALHAIJA ET AL.: XDGAN - MULTI-MODAL 3D SHAPE GENERATION IN 2D SPACE 11

[8] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. pi-
gan: Periodic implicit generative adversarial networks for 3d-aware image synthesis. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 5799–5809, 2021.

[9] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An
information-rich 3d model repository. arXiv preprint arXiv:1512.03012, 2015.

[10] Ding-Yun Chen, Xiao-Pei Tian, Edward Yu-Te Shen, and Ming Ouhyoung. On visual
similarity based 3d model retrieval. Computer Graphics Forum, 22, 2003.

[11] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling.
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 5932–5941, 2019.

[12] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese.
3d-r2n2: A unified approach for single and multi-view 3d object reconstruction. In
Proceedings of the European Conference on Computer Vision (ECCV), 2016.

[13] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d
object reconstruction from a single image. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 605–613, 2017.

[14] Lore Goetschalckx, Alex Andonian, Aude Oliva, and Phillip Isola. Ganalyze: Toward
visual definitions of cognitive image properties. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 5744–5753, 2019.

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Wein-
berger, editors, Advances in Neural Information Processing Systems 27, pages 2672–
2680. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/
5423-generative-adversarial-nets.pdf.

[16] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan Russell, and Mathieu
Aubry. AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation. In
Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2018.

[17] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt. Stylenerf: A style-based
3d-aware generator for high-resolution image synthesis, 2021.

[18] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. Geometry images. Proceedings of
the 29th annual conference on Computer graphics and interactive techniques, 2002.

[19] Zekun Hao, Hadar Averbuch-Elor, Noah Snavely, and Serge J. Belongie. Dualsdf:
Semantic shape manipulation using a two-level representation. 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 7628–7638, 2020.

[20] Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. Ganspace:
Discovering interpretable gan controls. arXiv preprint arXiv:2004.02546, 2020.

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf


12 ALHAIJA ET AL.: XDGAN - MULTI-MODAL 3D SHAPE GENERATION IN 2D SPACE

[21] Ali Jahanian, Lucy Chai, and Phillip Isola. On the" steerability" of generative adver-
sarial networks. arXiv preprint arXiv:1907.07171, 2019.

[22] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of
gans for improved quality, stability, and variation, 2018.

[23] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for
generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 4401–4410, 2019.

[24] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo
Aila. Analyzing and improving the image quality of stylegan. 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 8107–8116, 2020.

[25] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko
Lehtinen, and Timo Aila. Alias-free generative adversarial networks. In Proc. NeurIPS,
2021.

[26] Hyunsu Kim, Yunjey Choi, Junho Kim, Sungjoo Yoo, and Youngjung Uh. Exploiting
spatial dimensions of latent in gan for real-time image editing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 852–861,
2021.

[27] Minchen Li, Danny M. Kaufman, Vladimir G. Kim, Justin M. Solomon, and Alla Shef-
fer. Optcuts: joint optimization of surface cuts and parameterization. ACM Trans.
Graph., 37:247:1–247:13, 2018.

[28] Ruihui Li, Xianzhi Li, Ka-Hei Hui, and Chi-Wing Fu. Sp-gan: Sphere-guided 3d shape
generation and manipulation. ArXiv, abs/2108.04476, 2021.

[29] Chen-Hsuan Lin, Chen Kong, and Simon Lucey. Learning efficient point cloud gener-
ation for dense 3d object reconstruction. In AAAI, 2018.

[30] Huan Ling, Karsten Kreis, Daiqing Li, Seung Wook Kim, Antonio Torralba, and Sanja
Fidler. Editgan: High-precision semantic image editing. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2021.

[31] Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud generation.
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2836–2844, 2021.

[32] Lars M. Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and
Andreas Geiger. Occupancy networks: Learning 3d reconstruction in function space.
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 4455–4465, 2019.

[33] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view
synthesis. In ECCV, 2020.

[34] Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as compositional
generative neural feature fields. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11453–11464, 2021.



ALHAIJA ET AL.: XDGAN - MULTI-MODAL 3D SHAPE GENERATION IN 2D SPACE 13

[35] Jeong Joon Park, Peter R. Florence, Julian Straub, Richard A. Newcombe, and S. Love-
grove. Deepsdf: Learning continuous signed distance functions for shape represen-
tation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 165–174, 2019.

[36] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image syn-
thesis with spatially-adaptive normalization. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019.

[37] Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga Sorkine-
Hornung. Autocuts: simultaneous distortion and cut optimization for uv mapping.
ACM Trans. Graph., 36:215:1–215:11, 2017.

[38] C. Qi, L. Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In NIPS, 2017.

[39] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learn-
ing on point sets for 3d classification and segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 652–660, 2017.

[40] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan, Yaniv Azar, Stav Shapiro,
and Daniel Cohen-Or. Encoding in style: a stylegan encoder for image-to-image trans-
lation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2287–2296, 2021.

[41] Alla Sheffer and John C. Hart. Seamster: inconspicuous low-distortion texture seam
layout. IEEE Visualization, 2002. VIS 2002., pages 291–298, 2002.

[42] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. Deep march-
ing tetrahedra: a hybrid representation for high-resolution 3d shape synthesis. Ad-
vances in Neural Information Processing Systems, 34, 2021.

[43] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of
gans for semantic face editing. In CVPR, 2020.

[44] Yujun Shen, Ceyuan Yang, Xiaoou Tang, and Bolei Zhou. Interfacegan: Interpreting
the disentangled face representation learned by gans. TPAMI, 2020.

[45] Ayan Sinha, Jing Bai, and Karthik Ramani. Deep learning 3d shape surfaces using ge-
ometry images. In European conference on computer vision, pages 223–240. Springer,
2016.

[46] Olga Sorkine-Hornung, Daniel Cohen-Or, Rony Goldenthal, and Dani Lischinski.
Bounded-distortion piecewise mesh parameterization. IEEE Visualization, 2002. VIS
2002., pages 355–362, 2002.

[47] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. Octree generating net-
works: Efficient convolutional architectures for high-resolution 3d outputs. In Pro-
ceedings of the IEEE international conference on computer vision, pages 2088–2096,
2017.

[48] Nobuyuki Umetani. Exploring generative 3d shapes using autoencoder networks. In
SIGGRAPH Asia 2017 technical briefs, pages 1–4. 2017.



14 ALHAIJA ET AL.: XDGAN - MULTI-MODAL 3D SHAPE GENERATION IN 2D SPACE

[49] Andrey Voynov and Artem Babenko. Unsupervised discovery of interpretable direc-
tions in the gan latent space. In International Conference on Machine Learning, pages
9786–9796. PMLR, 2020.

[50] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Joshua B. Tenenbaum.
Learning a probabilistic latent space of object shapes via 3d generative-adversarial
modeling. In NIPS, 2016.

[51] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1912–
1920, 2015.

[52] Xingguang Yan, Liqiang Lin, Niloy J Mitra, Dani Lischinski, Danny Cohen-Or, and
Hui Huang. Shapeformer: Transformer-based shape completion via sparse representa-
tion. arXiv preprint arXiv:2201.10326, 2022.

[53] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath
Hariharan. Pointflow: 3d point cloud generation with continuous normalizing flows.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
4541–4550, 2019.

[54] Dongsu Zhang, Changwoon Choi, Jeonghwan Kim, and Young Min Kim. Learn-
ing to generate 3d shapes with generative cellular automata. arXiv preprint
arXiv:2103.04130, 2021.

[55] Jason Y. Zhang, Gengshan Yang, Shubham Tulsiani, and Deva Ramanan. NeRS: Neural
reflectance surfaces for sparse-view 3d reconstruction in the wild. In Conference on
Neural Information Processing Systems, 2021.

[56] Yuxuan Zhang, Wenzheng Chen, Huan Ling, Jun Gao, Yinan Zhang, Antonio Torralba,
and Sanja Fidler. Image gans meet differentiable rendering for inverse graphics and
interpretable 3d neural rendering. In International Conference on Learning Represen-
tations, 2020.

[57] Linqi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation and completion through
point-voxel diffusion. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 5826–5835, 2021.


