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Abstract

Event cameras asynchronously report per-pixel intensity changes with high temporal
resolution. Their sparse and temporally precise nature is well suited for fast visual flow
estimation. The normal optical flow can be estimated by fitting a plane to spatio-temporal
events. However, least-squares plane fitting suffers from outliers due to the significant
noise of events. Existing methods involve 1) iterative outlier rejection or 2) goodness-of-
fit rejection after single-shot planar fitting from greedily selected spatially neighboring
events. In contrast to these methods, we propose a method of selecting the events sup-
porting a plane before performing a fitting, using the inlier probability from a lightweight
neural network that captures both global and local structures. During inference, single-
shot planar fitting is performed from only events with a higher inlier probability. We
model each event selection by a Bernoulli distribution with the inlier probability and
train the network to maximize the inlier count while sampling in a self-supervised man-
ner. We verify that our event selection improves the accuracy of optical flow estimation
with publicly available real data.

1 Introduction
Optical flow is the motion vector of objects, surfaces, and edges projected onto the im-
age plane. It is important for understanding dynamic scenes with self-driving cars, drones,
and automated robots. The classical image-based methods use the brightness consistency
assumption that luminance does not change between two images with a certain interval
[13, 17]. In recent years, many methods have been developed for complex feature extraction
and association at multiple resolutions using deep convolutional neural networks on GPUs
[10, 24]. While rich computational power and a large model are driving increasing accuracy,
fast sensing and low-power processing are still required for resource-limited applications.

Event-based cameras offer many advantages over standard frame-based cameras, such as
low latency, high temporal resolution, and a high dynamic range, and are thus suitable for
fast visual flow computations. Because of the nature of their asynchronous response only to
changes in the luminance of each pixel, events inherently contain motion information.

Using the spatio-temporal structure of events, the normal flow can be obtained by fitting
a plane to events under a local constant velocity assumtion [6]. This approach is described in
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detail in Section 3. The visual flow based on planar fitting is an event-driven algorithm that
takes advantage of asynchrony and spatial sparsity to achieve low latency. However, least-
squares plane fitting suffers from outliers due to significant event noise [22]. In previous
work [2, 6, 18], iterative outlier rejection has been used, but this increases computation,
especially in noisy scenes. Recently, a method has been developed that greedily selects
events with the largest timestamps in the spatial neighborhood and performs single-shot
plane fitting [16]. This method is non-iterative, but events selected by simple rules may
contain noise events, so leading to poor estimation results. In fact, we found that many
estimation results were rejected in post-processing due to the goodness-of-fit criterion.

The objective of this research is to achieve accurate single-shot estimation by selecting
events that support a plane before fitting. We propose a method of selecting the events based
on the inlier probability from a lightweight neural network that captures both global and local
structures. During inference, single-shot planar fitting is performed from only events with
higher inlier probability. In the training phase, we model each event selection by a Bernoulli
distribution with the inlier probability and train the network to maximize the inlier count
while sampling in a self-supervised manner. We verify that our event selection improves the
accuracy of optical flow estimation with publicly available real data.

2 Related Work
In recent years, various methods have been developed for estimating optical flow from event
data. In a variant of the Lucas-Kanade method [5], which uses luminance changes approxi-
mated by events, there is a loss of luminance information in the conversion from intensity to
events. More recently, there are methods based on block matching of time slices of events
[15] and variational methods for simultaneous image reconstruction and optical flow esti-
mation [3]. There are methods for regressing optical flow directly with a deep convolutional
neural network by inputting timestamps and frequencies of events as images [11, 25, 26, 27].
These methods are computationally intensive because of their image-based dense processing.

The event-based visual flow estimation algorithm with planar fitting takes advantage of
the sparsity and the temporal nature of events. However, least-squares plane fitting suffers
from outliers due to significant event noise [22]. Outlier rejection done in an iterative way
[2, 6, 18] will result in loss of latency. Recently, there is a method that greedily selects
events with the largest timestamps in the neighborhood of the incoming event and performs
single-shot planar fitting [16]. This method is non-iterative, but the simple rule may select
noise events, and many of the estimation results are rejected in post-processing due to poor
fitting.

We solved this problem by noise-robust event selection that takes into account the struc-
ture of a plane before fitting. We realize this selection by using a lightweight neural network
that captures both global and local structures, outputting the inlier probability for each event
from a set of local events.

There are several methods for outputting the importance of each data point using a neural
network. DeepFit [4] uses a neural network to output a weight for each point in a weighted
least-squares method during jet fitting of a point cloud. It requires the ground truth of the
normals for training. In contrast, since events are noisy, we design a framework that excludes
points that are not associated with a plane as outliers. Our network is trained without any
labels by using sampling. NG-RANSAC [7] is a method of sampling the minimum set using
a categorical distribution represented by a neural network, rather than a uniform distribution,
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when creating the hypothesis pool in the RANSAC algorithm. Following the RANSAC
framework, multiple hypotheses are generated and the best one is selected during inference.
In contrast, we model whether to select each data point with a Bernoulli distribution, and a
single-shot estimation is performed with points with higher probability during inference.

3 Event-based Optical Flow by Fitting a Plane
An event-based camera outputs an event when the logarithmic intensity changes by more
than a pre-defined threshold value at each pixel. An event is represented by a tuple (x,y, t, p)
of four values, where x,y are the spatial localtion of the change in the pixel coordinate, t is
the timestamp of the triggerd event, and p ∈ {+1,−1} is the polarity that corresponds to the
positive or negative intensity change, respectively.

By continuously reacting to changes in luminance at each pixel, the most recent events
form a surface in space-time. The spatio-temporal surface is well known as the surface of
active events (SAE) [6], which is defined mathematically as follows:

Σe : R2 → R (1)
x 7→ Σe(x) = t (2)

where x = [x,y]>. The spatial gradient vector of the SAE ∇Σe(x) =
[

∂Σe(x)
∂x , ∂Σe(x)

∂y

]>
rep-

resents the rate and the direction of change of time with respect to the space, i.e., its com-
ponents are the inverse of the components of the motion vector at x. Under the assump-
tion of constant local velocity, the SAE can be represented by a plane t = ax + by + c.
Planar parameters are estimated by fitting a plane using the least-squares method. Let
B = [x j,y j,1] j=1,...,n ∈ Rn×3 be the planar basis and t = [t1, ..., tn]

> be the target, and the

plane parameter β = [a,b,c]> is estimated as follows:

β̂ = (B>B)−1B>t (3)

where n is the number of the events. The optical flow is calculated as the normal flow with
local planar parameters as follows:

v =
1

‖∇Σe(x)‖
∇Σ̂e(x) =

1
a2 +b2

[
a
b

]
(4)

where ∇Σ̂e(x) = ∇Σe(x)
‖∇Σe(x)‖ is the unit vector of ∇Σe(x). A series of the normal flow estimation

is performed in an event-by-event manner for each new event.
In summary, when a new event occurs, a plane fitting is performed on the neighborhood

events, and the normal flow is computed from the estimated planar parameters. Outlier
rejection is necessary because events contain a lot of noise that makes least-squares fitting
poor. In the next section, we describe the proposed event selection method that takes into
account planar structure without repetition using a neural network.

4 Proposed Method
In this section, we explain the proposed method of selecting events based on the inlier prob-
ability by the neural network and self-supervised learning of the network. First, we describe
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Figure 1: Our network structure using a shallow PointNet. It takes as input the spatio-
temporal events of the coordinates centered at the EOI in the local window and outputs the
inlier probabilty p of each event e. To capture the relationship between a plane and individual
events, we extracted local features g by MLP and global features G by max aggregation. The
red dots indicate the EOIs that were determined to be outliers.

the design of the input-output and the network for event inlier probability, as well as the op-
erations during inference (Section 4.1). Second, we describe sampling-based self-supervised
learning of the network, including modeling of sampling distributions and the derivation of
the gradients (Section 4.2).

4.1 Event inlier probabilty
For outlier-robust single-shot plane fitting, inlier selection must take into account the geo-
metric structure of the plane formed by spatio-temporal events. Therefore, we propose a
scheme to output the inlier probability for each event from a local event cloud using a neural
network that captures the three-dimensional structure.

To achieve low-latency event processing, the algorithm is performed for each new event,
denoted as the event of interest (EOI). When an EOI (xi, ti, pi) arrives, a group of events in
the spatio-temporal neighborhood of the EOI is formed in the coordinate centered at the EOI
as follows: Si = {e j = (∆x j,∆t j) : x j ∈ N (xi), t j > ti − δ t, p j = pi} where ∆x j = x j − xi,
∆t j = t j − ti, and N (xi) is a square patch with length r centered at xi. It is then passed
through a neural network to output the inlier probability p j of each event.

We used a PointNet [21] architecture as shown in Fig. 1 to capture global and local
geometric structures while taking advantage of event sparsity. We emphasize that it is a
shallow network because it only needs to capture the relationship between a simple plane
and each event in a small event cloud. The network outputs a local representation g(e j) by a
multi-layer perceptron (MLP) for each event and a global representation G(Si) by subsequent
MLP transformation and max aggregation. These representations are concatenated and fed
into a MLP h(·), followed by the sigmoid function to output the event inlier probabilty p j,
as follows:

z j = h(G(Si),g(e j)), (5)
p j = σ(z j). (6)
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Figure 2: Our self-supervised learning and inference procedures. During training (left), the
probabilities outputs of the network are used as parameters of a Bernoulli distribution to
sample each event. At each event, we sample whether to select (m=1, red) or not (m=0,
white), and estimate the plane on the selected events and calculate the negative inlier count
loss. The final loss L is the average of K samples, and the gradients are calculated for
network outputs. During inference (right), the inlier events (red) are selected by thresholding
the probabilities, and the plane is estimated using only these events.

During inference, an event with a probability greater than a threshold of 0.5 is considered
as an inlier. When the EOI is inlier (pi > 0.5), plane fitting is performed on the inlier event
cloud Ŝi = {e j : e j ∈ Si, p j > 0.5} by Eq. 3, followed by normal flow calculation by Eq.
4, as shown on the right side of Fig. 2. At this time, the plane is defined by coordinates
centered at the EOI as ∆t j = a∆x j + b∆y j + c. Thus, the base and target in Eq. 3 are B =

[∆x j,∆y j,1] j=1,...,n and t = [∆t1, ...∆tn]
>, respectively.

4.2 Self-supervised learning
We describe how to train the network that outputs event-inlier probabilities in a self-supervised
manner without labels. The goodness of the output probability is measured by how many
events support the estimated plane β . The negative inlier count loss is defined as the negative
number of events for which the magnitude of the time residuals is less than a threshold θ as
follows:

l =−#{e j : e j ∈ Si,
∣∣∆t̂ j −∆t j

∣∣< θ} (7)

where ∆t̂ j = â∆x j + b̂∆y j + ĉ. The symbol # denotes the number of elements in the set. Since
the derivative of the loss function with respect to the network’s output p cannot be computed,
we define the training objective as the minimization of the expected loss inspired by [7, 8].
We define the binary variable m j whether to use the event or not with a Bernoulli distribution
f with a parameter of probability p j for each event e j independently, as follows:

m j ∼ f (·; p j) = p
m j
j (1− p j)

1−m j . (8)

The expected loss is defined as follows:

L= Em∼ f (·;p) [l(m)] (9)
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where m = [m1, ...,mn]
> and p = [p1, ..., pn]

>. l(m) is the negative inlier count loss for the
plane computed from the selected events Ŝi = {e j : e j ∈ Si,m j = 1}. The derivative of the
expected loss with regard to the distribution parameter can be computed [23]. To stabilize
the gradient, we compute the gradient with regard to the logit instead of the probability as
follows:

∂L
∂z

= Em

[
l(m)

∂
∂z

log f (·;p)
]

(10)

where z = [z1, ...,zn]
>. Here, ∂

∂ z j
log f is derived for each state m j as follows:

∂
∂ z j

log f =

{
1−σ(z j) (m j = 1)
−σ(z j) (m j = 0)

. (11)

Proof: Substitute Eq. 6 for the logarithm of the distribution (Eq. 8) and differentiate with
regard to z j to obtain ∂

∂ z log f = m σ ′(z)
σ(z) − (1−m) σ ′(z)

1−σ(z) . Then, substitute the well-known
derivative of the sigmoid function σ ′(z j) = σ(z j)(1−σ(z j)) into this equation and organize
it for each value of m j.

The number of all possible states of m is 2n, and it is infeasible to integrate them to
calculate the expectation. Therefore, we approximate the gradient by the average of the K
drawn samples:

∂L
∂z

≈ 1
K

K

∑
k=1

[
l(mk)

∂
∂z

log f (·;p)
]

(12)

where mk ∼ f (·;p) is the k-th drawn sample. Because the approximation is done by sam-
pling, the gradient variance can be high. We apply the variance reduction technique of
subtracting the average l̄ as in [7]:

∂L
∂z

≈ 1
K

K

∑
k=1

[
(l(mk)− l̄)

∂
∂z

log f (·;p)
]
. (13)

The gradients are back-propagated to the network parameters, and the parameters are up-
dated by descending the gradients.

5 Experiment
To verify the effectiveness of the proposed method, we compared the accuracy of the esti-
mated optical flow with the full model of SOFEA [16], the latest non-iterative event-based
optical flow estimation method. In the proposed method, planar fitting was performed in
two different parameterizations. One is the general plane in the EOI center coordinates de-
scribed earlier, ∆t = a∆x+b∆y+c (denoted as w/ bias). The other is a plane through the EOI
(∆x j,∆y j,∆t j) = (0,0,0) as ∆t = a∆x+b∆y, similar to SOFEA (denoted as w/o bias). Two
metrics are used to evaluate optical flow accuracy. One is the relative endpoint error (REE)
which is the magnitude of the error vector relative to the ground truth in percentage, and the
other is the angular error (AE) in space-time [22]. We report sample means and standard
deviations for both metrics. If the slope of the fitted plane is incorrectly small, the length
of the estimated flow will be unusually large, significantly worsening the evaluation. Large
estimates with more than corner-to-corner movement in the image at 30 fps were excluded.
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5.1 Dataset
For evaluation, we used three types of data in SOFEA [16].
Stripes: This is a planar scene with stripes sliding at a constant speed from [18]. The camera
is a dynamic vision sensor (DVS) [14] with a resolution of 128×128.
Rotating bar: This is the data capturing a scene with a rotating bar used for evaluation
in [2, 12]. The velocity is assumed to be constant within a local patch for planar fitting,
although it varies in the radial direction. The camera is an asynchronous time-based image
sensor (ATIS) [20] with a resolution of 304×240.
HDR: This is the data capturing a high dynamic range (HDR) scene by sliding the camera,
which is a part of the Event Camera Dataset [19]. The camera is a dynamic and active pixel
vision sensor (DAVIS) [9] with a resolution of 240×180.

5.2 Training and implementation details
Here, MLP1 and MLP2 are single-layer perceptrons of size 16, and MLP3 is a 2-layer MLP
of size 16 and 1, as shown in Fig. 1. All layers except the final layer contain batch nor-
malization and ReLU activation. The patch size r of the input was set to 7 and the temporal
window size dt to 50 ms. For efficient implementation, the maximum event buffer size for a
single pixel was set to 2. The number of sampling K was set to 64. The input timestamp ∆t
was normalized by dividing by 10 ms. ∆x and ∆y, which are integers in [−3,3] when r = 7,
were not normalized. As data augmentation, for each sample, the timestamps were scaled
by a factor drawn from a uniform distribution with [5/6,6/5]. For the rotating-bar sequence,
the flip augmentation in the x and y directions with a probability of 0.5 was added.

The data used in SOFEA were taken with different cameras and in different environ-
ments. The experiments aimed to confirm the effectiveness of self-supervised learned inlier
points within each scene, rather than generalization between sequences. In each sequence,
0.8 of the total temporal length was used for training and 0.2 for testing. The threshold was
set to 5 ms for the HDR scene and 1 ms for the other scenes. We introduced the goodness-
of-fit noise rejection with the number of events supporting the estimated plane as a metric,
similar to SOFEA. The threshold of temporal residuals is the same as in training, and the
number of events Nsp is set to 7.

We used a batch size of 64, the Adam optimizer, and a learning rate of 10−4. The imple-
mentation for training was done in PyTorch and trained on a single Nvidia RTX A6000 GPU.
The convergence of the loss was related to the amount of noise, requiring 30,000 iterations
for the less noisy rotating-bar squence and 500,000 iterations for the noisy HDR squence.
The time taken per iteration was 0.025 seconds for training. The tests were performed in
CPU-based MATLAB.

5.3 Results
The numerical results of the experiments are shown in Table 1 and the visualizations are
shown in Fig. 3. In all scenes, either or both of the proposed methods achieve better accuracy
than the existing method in both metrics. The values in Table 1 differ from those in the
SOFEA paper because we evaluated on a test set. Looking at the estimated optical flow of the
HDR scene, our method has more estimated points than SOFEA and is closer to ground truth.
In practice, the estimated points were 288k for our method (w/ bias) and 114k for SOFEA
in the HDR scene. Figure 4 shows that variation in the number of estimated points and the
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Table 1: Experimental results. The evaluation metrics are the relative end-point error (REE)
and the angular error (AE). Lower is better for both.

Scene Stripes Rotating bar HDR
REE [%] AE [°] REE [%] AE [°] REE [%] AE [°]

SOFEA[16] 17.3±14.4 2.06±7.72 22.0±31.1 6.15±6.71 31.6±45.5 8.82±10.4
Ours (w/o bias) 12.3±6.56 0.67±0.57 16.9±12.3 5.72±4.30 30.2±33.7 5.79±4.76
Ours (w/ bias) 10.8±6.09 0.65±0.55 17.5±15.4 5.79±4.76 37.3±48.8 7.16±7.68

Figure 3: Visualization of experimental results from test data. The rows show each sequence.
The columns, from left to right, show the events, the SAE, the optical flow by SOFEA [16],
the optical flow by our proposed method (w/ bias), and the ground truth optical flow. All
are displayed as accumulated for 50 ms. The events are indicated by red for positive and
green for negative polarity. In the optical flow display, hue represents orientation and color
intensity represents length, as in the color map shown in the upper-right corner of each image.

average of REE when varying Nsp by 4 from 3 to 19, which is the tightness of the estimated-
points rejection with goodness of fit in post-processing. SOFEA can achieve low errors
when evaluating fewer points by the strict rejection, but the errors increase as the number
of evaluation points is increased by loosening the goodness-of-fit criterion. In contrast, our
method keeps low errors regardless of the tightness of the rejection. This shows that greedy
selection in SOFEA contains many outliers, and many of the estimates are rejected by the
goodness-of-fit check in post-processing. In contrast, our event selection is able to exclude
outliers in advance of fitting by capturing the planar structure with the neural network.

5.4 Runtime

Runtime was measured for the event selection for plane fitting after local patches were ex-
tracted. We made a comparison between two methods: our event selection based on the
inlier probability from the neural network output and SOFEA’s greedy selection of associ-
ated neighbouring events in their original implementation. Both implementations are event-
by-event processing. We measured the time in MATLAB using a 3.30GHz Core i9-9820X



NAGATA, AOKI: SSL OF INLIER EVENTS FOR EVENT-BASED OPTICAL FLOW 9

Figure 4: Variation in the number of estimated points and the average of REE when varying
the tightness of the post-processing checking with the goodness of fit for the three scenes.

CPU. SOFEA’s runtime was about 2 × 10−4 seconds per event, while our method’s was
about 3× 10−5 seconds per event. Our method uses a shallow network, which allows for
efficient event selection. Note that there may be room to optimize the implementation of
both approaches in terms of both software and hardware.

6 Conclusion

We proposed a method for event selection using a neural network for event-based optical
flow with plane fitting. The network that captures global and local structures allows events
supporting a plane to be determined before fitting is performed. We model each event selec-
tion with a Bernoulli distribution with the inlier probability of the network output and train
the model to maximize the inlier count while sampling in a self-supervised manner. During
inference, the inlier event set is determined by thresholding the inlier probability and plane
fitting is performed in a single-shot way. Experiments with real data showed that our event
selection improved the accuracy of optical flow estimation. Furthermore, when we evaluated
at many points by relaxing the criteria for rejection of estimates, the accuracy of the existing
method degraded, while the accuracy of our method did not. This indicates that our event
selection is of higher quality than the existing greedy event selection.

Local plane fitting methods, such as the proposed method and SOFEA, have limitations
due to the linear assumption and the aperture problem. If the linear assumption is violated,
model errors may bias the estimation and reduce its accuracy. The spatial-temporal window
needs to be set appropriately for the scene to satisfy the assumption to mitigate the error.
These methods, in principle, can only obtain the normal flow, and require a wide range of
consistency measurements to estimate the full flow. Akolkar et al. [1] have reported that the
aperture-robust visual flow could be estimated in realistic scenes by linearizing a complex-
shaped object with multiple small edges and multiscale pooling of normal flows. Therefore,
verifying the proposed method under the linear assumption is informative. Evaluation in
realistic scenarios and generalization testing for scenes remain as future work.
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