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Abstract

Human pose estimation from single images has made significant progress in the past
but still faces fundamental challenges from the occlusion and overlapping of joints in
many cases. This is partly due to the limitation of the traditional paradigm for this prob-
lem, which attempts to locate human body joints solely and as a result can fail to resolve
the spatial connections among joints that are critical for the identification of the whole
pose. To overcome this shortcoming, we propose to explicitly incorporate spatial rea-
soning into pose estimation by formulating it as a structured graph learning problem, in
which each image pixel is a candidate graph node with every two nodes connected via an
edge that captures their affinity. The advantage of this representation is that it allows us
to learn feature embeddings for both the nodes and edges, thereby providing a sufficient
capacity to delineate correct human body joints and their connecting bones. To facili-
tate efficient learning and inference, we exploit self-attention transformer architectures
that fuse node and edge learning pathways, which can save parameter numbers and per-
mit fast computation. Experiments on the popular MS-COCO Human pose estimation
benchmark show that our method outperforms representative methods.

1 Introduction
Powered by advances in machine learning and deep learning, computer vision applications
have made significant progress in recent years, among which human pose estimation is a
rapidly evolving one that impacts several human-centered technologies in 3D space, such
as virtual reality [7], smart home [23], human-computer interaction [34], and urban brain
[37]. The aim of human pose estimation is to identify each joint position of the human
body from a given image to obtain the geometric and spatial configuration of the body.
This is a fundamentally challenging task because the variations of image appearance and
body configuration can be unlimited, which requires powerful spatial reasoning to resolve
ambiguous cases when certain joints are occluded or overlapped.
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(a) 肢体重叠 (b) 肢体交叉 (c) 肢体遮挡

Figure 1: Illustration of challenging human poses that require careful spatial reasoning to
handle. Left: the overlapped and crossed body parts are difficult to locate for previous
methods as the image appearance of the arms and legs cannot be easily distinguished from
each other using only separate node information. Right: we extend the spatial reasoning to
a more structured paradigm, which includes both nodes and connected edges between them.

Despite the inherently coherent structure of human body joints, the current mainstream
approach to human pose estimation remains largely oblivious of the structure and operates
in an object classification fashion for each individual joint [17, 30]. One typical working
assumption of this approach is that there can be at most one human joint of the same semantic
category at each image region of interest. This may work well in simple cases where all joints
are clearly delineated in an image but can fail when some of these joints are not visible due
to occlusion or overlapping with others. Take Figure 1 for example. When certain body parts
are overlapped or share a similar appearance with other parts, current methods can be misled
to generate incorrect predictions using only separate node information.

While spatial reasoning is critical for robust pose identification in challenging cases as
illustrated in Figure 1, currently there are few relevant studies to tackle this problem satis-
factorily. The method of [14] trains a graph neural network to predict the edges between
pairs of selected nodes, but by assuming the existence of only one type of body joint within
a single image region, it cannot learn graph node embeddings that distinguish overlapped
joints. In contrast, the method of [24] learns joint embeddings as scalars from the spatial
locations of joints, which are then used to determine the affinity between joints according to
the intra-class distances of these embeddings. Still, the method is not sufficiently flexible to
resolve overlapping cases.

In view of the limitations of the existing methods, we propose to explicitly incorporate
spatial reasoning into human pose estimation by not just learning to recognize the appearance
of individual body joints but also capturing their mutual connections relating to the structure
of the whole body posture. Due to the flexibility of graphs for structural representation [31],
we propose to formulate pose identification as a structured graph learning problem, in which
each image pixel is viewed as a graph node that encodes the visual and spatial features
of a potential body joint. Each pair of nodes is connected by an edge that corresponds
to a potential bone segment, which provides additional rigidity constraints on the spatial
configuration of body joints. Compared with the work of [14] that only captures the spatial
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connectivity among a handful of nodes for pose inference, our representation is considerably
more flexible for encoding the affinity between every pair of potential nodes on the image
space, which provides a sufficient capacity to reason the plausible spatial configuration of
potentially challenging body poses.

The core contribution we make in this paper is that we propose a structured graph learn-
ing model on the self-attention transformer architecture that can efficiently perform flexi-
ble spatial reasoning for human pose estimation. While establishing an explicit connection
between every pair of potential joint positions is computationally infeasible, we achieve si-
multaneous node and edge prediction by learning shareable pixel-wise node embeddings
via a popular self-attention model [18] from raw image features and incorporating every
pair of node features to calculate their edge strength. The prediction of joint positions is
done by learning category-specific token embeddings to query each node’s features to pro-
duce human-understandable heatmaps. To enable joint training, we deploy two loss func-
tions for node and edge prediction respectively. The first loss function is the mean squared
error (MSE), which calculates the distance between the predicted joint heatmaps and the
groundtruth annotations. The other loss function we use for edge prediction is the binary
cross-entropy loss that penalizes incorrect prediction of edge presence.

We conduct standard performance benchmarking on the widely used MS-COCO 2018
keypoint detection dataset [20]. Compared with other state-of-the-art methods, including
SimpleBaseline [32], HRNet [26], TransPose [35], and TokenPose [18], our approach achieves
a record-high 77.7 AP on the COCO validation set [20]. Our accuracy improves over that
achieved by the TokenPose [18] method by 1.9 points under the same experimental settings
with a similar level of parameter numbers and computation cost. This is particularly signifi-
cant in that TokenPose only leverages joint prediction for pose estimation, which shows that
our approach of graph-based spatial reasoning is able to provide an additional performance
improvement while not incurring extra computational burdens.

The structure of the paper is as follows. We survey the existing methods for human pose
estimation in Section 2, through which we point out the unique advantage of our method
in data-driven spatial reasoning. We then describe our graph learning approach in detail
in Section 3 and present the experimental results in Section 4. The paper is concluded in
Section 5 with a discussion on future work.

2 Related Work
Human pose estimation has been an active research area for many years. The task of pose
estimation is two-fold. Given an image, one is to locate the position of each body joint and
identify the semantic category it belongs to, and the other is to parse the detected joints and
distinguish those belonging to oneself and other people [41]. The challenge of the task stems
from the fact that there can be unlimited complexity and variability of human posture, cloth-
ing appearance, and background clutters in an image. On top of this are frequent occlusions
and overlapping, which require effective spatial reasoning to resolve the ambiguity in many
cases [11]. In the following, we discuss recent methods that leverage deep learning (con-
volutional neural networks [26], transformers [36]) for this challenge as they are often top
performers on popular evaluation benchmarks [20].

For single-person pose estimation, the challenge is somehow alleviated as the working
assumption is that there is only one person in a given image and therefore there is no need
to determine which person an articulated limb belongs to because only one of each type
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of articulated limbs exists in the image [5]. Many solutions are proposed to improve the
estimation accuracy, including global information collection [30], multi-scale learning [16],
graph representation [27], recursive attention model [6], spatial correlation [38], etc. The
evaluation of these methods on the MPII single-person pose estimation dataset shows that
correlation relationship modelling has a key role in the human pose estimation task.

For multi-person pose estimation, the difficulty is lifted compared with that in the
single-person case since the process of joint parsing is required to determine the correct
belonging of each detected joint to each person [2]. Currently, there are two main lines of
work that tackle this challenge. The top-down approach works by detecting each human
region first and then performing single-person pose estimation in each region separately,
hence removing the need of attaching the detected joint limbs to the correct body. The pro-
posed approaches include pose spatial transformation [9], cascaded pyramid network [3],
channel and spatial information enhancement [25], constructing a graph network [29], at-
tention model [35]. The current top-down methods have high accuracy in pose estimation
in simple scenes, but when there is a severe occlusion in the scene, such methods are more
difficult to utilize partially visible joint cues and the algorithm accuracy will be significantly
degraded. Our approach introduces graph learning and strengthen the network supervision
by both node and edge information. The bottom-up approach, compared with the top-down
one, is a local-to-global process that first detects all body joints from an image and then
divides them and attributes them to each target individual person. The interesting studies
include high-resolution network HigherHRNet [4], explicit joint-limb association [2], joint-
limb complementarity [12, 13], graph network-based joint clustering [14], joint attribution
grouping [24]. Compared with our approach, those methods do not handle the cases of
overlapped or occluded joints explicitly.

As our proposed method exploits graphs for human pose spatial reasoning, here we also
discuss methods that explicitly address graph learning. The graph is an effective repre-
sentation for structured and connected data. Graph learning refers to the use of machine
learning methods on graphs to obtain relevant features. Here we mainly review the methods
to study the correlation between two graph nodes. The related work includes link predic-
tion [19, 21], structural predictability [15], robustness analysis of similarity metrics [40].
drug-target interaction prediction [22], evolutionary neural network-based model [33], local
subgraph representation [1], graph attention networks [10, 28]. It is worth pointing out that
[14] learn to determine the connectivity between human joints by graph neural networks,
which is similar to the concept of link prediction, but the method still assumes that there is
only one joint of the same type at the same location. Currently, graph learning has not been
deeply investigated yet in the field of human pose estimation. Considering that human pose
is a type of structured graph data, and the difficulties in practical applications, introducing
graph learning can provide more space for technology exploration.

3 Structured Spatial Reasoning for Pose Estimation
Human pose data can be viewed as structured graph data, which contains information about
human nodes and connected edges. At the graph level, nodes and edges are two necessary
elements for a graph representation, and similarly, human body nodes and connecting edges
are critical constituents for the human body pose. In this paper, graph learning refers to
learning feature embeddings of image information, and then predicting human joints and
connected edges in the image.

Citation
Citation
{Chu, Ouyang, Li, and Wang} 2016

Citation
Citation
{Wei, Ramakrishna, Kanade, and Sheikh} 2016

Citation
Citation
{Ke, Chang, Qi, and Lyu} 2018

Citation
Citation
{Tian, Wang, Liang, and Shen} 2021

Citation
Citation
{Chu, Yang, Ouyang, Ma, Yuille, and Wang} 2017

Citation
Citation
{Zhang, Ouyang, Liu, Qi, Shen, Yang, and Jia} 2019

Citation
Citation
{Cao, Simon, Wei, and Sheikh} 2017

Citation
Citation
{Fang, Xie, Tai, and Lu} 2017

Citation
Citation
{Chen, Wang, Peng, Zhang, Yu, and Sun} 2018

Citation
Citation
{Su, Yu, Xu, Geng, and Wang} 2019

Citation
Citation
{Wang, Long, Gao, Ding, and Wen} 2020

Citation
Citation
{Yang, Quan, Nie, and Yang} 2021{}

Citation
Citation
{Cheng, Xiao, Wang, Shi, Huang, and Zhang} 2020

Citation
Citation
{Cao, Simon, Wei, and Sheikh} 2017

Citation
Citation
{Huang, Zhuang, and Qin} 2019{}

Citation
Citation
{Huang, Shum, Ho, and Aslam} 2020

Citation
Citation
{Jin, Liu, Xie, Wang, Qian, Ouyang, and Luo} 2020

Citation
Citation
{Newell, Huang, and Deng} 2017

Citation
Citation
{Liben-Nowell and Kleinberg} 2007

Citation
Citation
{Liu, Yu, Huang, and Zhang} 2021

Citation
Citation
{Jing, Liu, Wu, and Zhang} 2022

Citation
Citation
{Zhang, Wang, Wang, Zeng, and Xiao} 2016

Citation
Citation
{Lu, Guo, and Korhonen} 2017

Citation
Citation
{Yaghi, Faris, Aljarah, Al-Zoubi, Heidari, and Mirjalili} 2020

Citation
Citation
{Cai, Yan, Mai, Janowicz, and Zhu} 2019

Citation
Citation
{Gu, Gao, Lou, and Zhang} 2021

Citation
Citation
{Veli{£}kovi{¢}, Cucurull, Casanova, Romero, Lio, and Bengio} 2017

Citation
Citation
{Jin, Liu, Xie, Wang, Qian, Ouyang, and Luo} 2020



HUANG, HU, ZHANG: STRUCTURED SPATIAL REASONING FOR HPE 5

Linear dimensional transform

CNNs Feature maps

∙ ∙ ∙

∙ ∙ ∙∙ ∙ ∙

eye(l) ear(l)  ∙ ∙ ∙ ankle(r)

Transformer Layer

∙
∙
∙

∙ ∙ ∙∙ ∙ ∙

Node MLP head Edge MLP head

Concat

LayerNorm

Multi-head 

attention

LayerNorm

Feed-Forward
Category embeddings Pixel-level feature embeddings

Position embedding

Patch embeddings

Gridding

Transformer Layer

Visual tokensCategory query tokens

Figure 2: Overview of our graph learning architecture for human pose estimation. The
convolutional feature maps are uniformly divided into patches and linearly transformed to
1D visual tokens. 1D human joint category vectors are randomly initialized as query tokens.
Then, visual and query tokens are combined as input into the Transformer encoder to learn
multi-modal information through the multi-head self-attention algorithm. The last outputs of
visual tokens are spliced and reshaped back to the size of CNN feature maps, and pixel-level
node embeddings are obtained. Finally, category and node embeddings are used to predict
human joints and edges, respectively.
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For the task of outputting human joint information in images, many deep learning-based
methods have been studied before, such as using deep convolutional neural networks, trans-
former attention models, etc. To simplify the model complexity, we fuse two tasks as multi-
task learning using a single model, instead of designing two separate models. This requires
us to make full use of model potentialities.

The useful human pose information usually includes the joint category, location, ap-
pearance, edge orientation, and contextual background. The idea of existing graph learning
algorithms in determining whether an edge exists between two nodes is to calculate the sim-
ilarity of two nodes’ embeddings. The higher the similarity, the more likely an edge to
exist. Simultaneously, node recognition also relies on its feature embedding, which provides
a common point for both tasks of graph learning.

From this point, we design a model with a parameter-shared main stem and two lightweight
task-oriented heads. The main stem of the model is used to learn spatial feature embeddings,
then two heads perform separate tasks. Specifically, for the human joint prediction task, the
model outputs the predicted joint heatmaps. For the edge prediction task, the feature embed-
dings of two joints and the corresponding two joint category embeddings are concatenated
and then input into a multilayer perceptron. The model architecture is illustrated in Figure
2. The technical details of implementing these two specific tasks are described below.

3.1 Node Prediction
Currently, the popular network framework is first uses deep convolutional neural network
as the base network backbone to extract the high-level features of the image, and then use
the Transformer attention model to learn the global association relationship from the feature
maps [18, 35]. At last, the framework predicts N heatmaps of size Ĥ ×Ŵ , each heatmap
corresponds to a human joint category, and the location with a peak on the heatmap is con-
sidered to be the position where that type of joint is located. This combined framework
achieves state-of-the-art performance with less than half of the amount of parameters. Con-
sidering that this framework is more flexible, our paper also follows this framework. Given
an input image I ∈ RH×W×3, the backbone network model extracts convolutional features
from the image, and then generates feature maps F ∈RĤ×Ŵ×C. To fit the dimensionality of
the attention model, F is uniformly divided into L = Ĥ

Ph
× Ŵ

Pw
patches of size Ph ×Pw. These

blocks are further reshaped to 1D vectors of size Ph ×Pw ×C, and each vector is adapted to a
d-dimensional embedding v ∈Rd via linear transform P → v. Since human pose estimation
needs to output the position of human joints, the two-dimensional position embedding pi
is also added to every vectors to generate visual tokens v′i = vi + pi, where i ∈ [1,L]. The
transformed visual tokens represent the embeddings of spatial regions.

According to the attention mechanism, we first pre-define N learnable d-dimensional
vectors as category query tokens, which represent N human joint categories respectively.
Once the query tokens and visual tokens are obtained, they enter into the commonly used
multiple attention modules and learn new embeddings according to a general attention for-
mulation:

f
′Q
i = f Q

i +∑
j

so f tmax j

(
s
(

f Q
i , f K

j

))
TV

(
f K

j
)

(1)

where s denotes the similarity function of the i-th query instance feature f Q
i and the j-th key

instance feature f K
j , and TV (·) is the linear transformation of j-th value instance feature.
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After multiple stacked multi-head attention modules, the final computed category em-
beddings are mapped into Ĥ ×Ŵ -dimensional feature vectors via linear projection, and then
turned into N two-dimensional heatmaps by reshape operation. The MSE loss function is
used to calculate the difference between the groundtruth and predicted heatmaps to get the
loss lkpt during training.

3.2 Edge Prediction
Edge prediction means that for a set of nodes V , predicting the set E of observable edges from
a series of node combinations [39], and more specifically, for the adjacency matrix A com-
posed of node sets, Ai j=1 if the node pair (i, j) belongs to E, otherwise Ai j=0. To simplify the
calculation, we take the heatmaps generated in the node prediction task as a reference, and
consider each pixel of heatmaps as a node, the total number of nodes is Ĥ ×Ŵ ×N. Then we
extract feature embeddings for these nodes. In the node prediction task, we have obtained
visual tokens with position embedding for every image patch. We can reconvert and combine
these visual tokens back to the size Ĥ ×Ŵ ×d, results in d-dimensional embeddings for ev-
ery spatial position. To overcome the case of overlapped nodes, the embedding of a node and
its corresponding category embedding are concatenated. Such two extended embeddings of
an edge are input to a multilayer perceptron, and finally we can obtain the prediction prob-
ability of this edge. The design of combining category and visual embeddings can enhance
the representation of an edge, fusing the information including location, category, appear-
ance, and global relationship. The binarized cross-entropy loss function is used for training.
Positive edge samples are obtained from groundtruth, while the rest of candidate edges are
as negative edge samples. The predicted probability values of these positive and negative
samples are compared with the true label values 0/1 to obtain the loss lpair.

Node prediction and connected edge prediction are combined as joint training:

loss = lkpt +λ × lpair (2)

where λ is a balance weight. Note that in edge prediction, node features are converted
from visual tokens and no new parameters added, the only added model parameter is the
lightweight three-layer perceptron used in edge prediction. In the experimental section, we
will see that joint learning can improve the performance of human pose estimation.

4 Experimental Details

4.1 MS-COCO Keypoint Dataset
The qualitative and quantitative experiments are performed on the MS-COCO 2018 keypoint
detection dataset [20]. This popular dataset contains training, validation and testing sets. On
the training and validation sets, there are 118,287 and 5000 images respectively, a total of
over 150,000 human instances with around 1.7 million labelled keypoints. The testing set
has two splits: test-dev and test-challenge, each includes roughly 20,000 images. We train
and evaluate our models on the training and validation sets. The model is also evaluated on
the test-dev set and accuracy values are obtained from the online evaluation server.

In order to match predictions to groundtruth, COCO keypoint dataset defined an over-
lapping index suitable for human pose data, object keypoint similarity (OKS), which calcu-
lates the overlapping ratio between groundtruth and predictions in terms of point distribution.
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Table 1: Comparisons of our model to other state-of-the-art models. Hybrid convolution
plus Transformer methods (TokenPose[18], TransPose[35], and ours) outperform pure con-
volution based methods (SimpleBaseline[32] and HRNet[26]). "+" means model ensemble.
Particularly, with similar model parameters and settings, AP of our approach is higher than
TokenPose by 2.7 points.

Approach Input size #Params GFLOPs AP AP50 AP75 APM APL AR
Simple-Res50 256×192 34.0M 8.9 70.4 88.6 78.3 67.1 77.2 76.3
Simple-Res101 256×192 53.0M 12.4 71.4 89.3 79.3 68.1 78.1 77.1
Simple-Res152 256×192 68.6M 15.7 72.0 89.3 79.8 68.7 78.9 77.8
HRNet-W32 256×192 28.5M 7.1 74.4 90.5 81.9 70.8 81.0 79.8
HRNet-W48 256×192 63.6M 14.6 75.1 90.6 82.2 71.5 81.8 80.480.480.4
PureTransformer 256×192 5.8M 1.3 65.6 86.4 73.0 63.1 71.5 72.1
TokenPose-L/D24 256×192 27.46M 10.98 75.0 89.7 81.9 71.7 81.8 80.3
TransPose-H-A6 256×192 17.5M 21.8 75.0 89.8 81.9 71.7 81.7 80.2
Ours 256×192 27.47M 10.99 75.3 90.6 82.6 72.3 79.5 80.1
Ours+ 256×192 27.47M 10.99 77.877.877.8 93.693.693.6 84.884.884.8 74.974.974.9 81.981.981.9 80.2

Based on the OKS index, we use six evaluation metrics by adjusting the thresholds of match-
ing criteria to compare the performance of a model. They are AP (i.e. average precision),
AP50, AP75, APM , APL and AR (i.e. average recall). The 20 top-scoring predictions are
selected to attend the evaluations per image.

4.2 Training Details

In this paper, the two-stage top-down human pose estimation paradigm is adopted. In this
paradigm, human regions are firstly obtained by a person detector. Then each human instance
after cropping and scaling is input to our model and keypoints and edges are predicted. To
facilitate the comparisons, we follow the previous methods[18, 35] to use person detec-
tors provided by SimpleBaseline[32]. The CNN backbone of our method is selected from
HRNet-W48[26] and its parameters are also initialized by the pre-trained model of HRNet-
W48. The Transformer parts of our model are trained from scratch. During training, the
Adam optimizer is utilized with mini-batches of size 16. The learning rate is started from
1e-3, and is declined to 1e-4 and 1e-5 at the 200th and 260th epochs, respectively. The total
training process iterates 300 epochs on the training set. For the edge sampling, the annotated
human joints can form the human skeleton, and skeletons are used as human edges. In the
calculation of edge loss, the weight of negative to positive edges is maintained as 5. The
random data augmentation is analogous to the steps in HRNet[26].

4.3 Comparison Results

The experimental results and statistics of ours and other methods on the validation set are
recorded in Table 1. Hybrid convolution plus Transformer methods (TokenPose[18], Trans-
Pose [35], and ours) outperform pure convolution based methods (SimpleBaseline[32] and
HRNet[26]) using much fewer parameters, which shows the advantage of Transformer [8]
in model parameter reduction. More importantly, previous methods only attempt to locate
body joints solely. Compared to TokenPose [18] with similar model parameters and settings,
our approach has improved AP by 2.7 points. Compared with TransPose [35] which use a
pixel-wise token embedding, our model has less computation cost. We show in Table 2 that
our method without the MLP layer performs on par with TokenPose. Considering the key
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Table 2: Ablation study of our method on COCO-val.
Method AP AP50 AP75 APM APL

TokenPose 75.0 89.7 81.9 71.7 81.8
Ours w/o MLP + Embeds 75.0 90.5 82.4 72.0 79.4
Ours 75.3 90.6 82.6 72.3 79.5

Table 3: Comparisons with graph-based models on COCO-val.
Method AP AP50 AP75 APM APL

Jin et al. (HGG) [14] 68.3 86.7 75.8 - -
Wang et al. (GPCNN) [29] 76.2 90.3 82.6 72.5 83.2
Ours 77.8 93.6 84.8 74.9 81.9

metric AP50 already achieves greater than 90, the further improvement of 0.3 brought by the
addition of this design is actually large, especially in the case of a similar amount of param-
eters and FLOPs. The examples of predicted accurate human joints and heatmaps are shown
in Figure 3, which contains some abnormal cases, such as scale, appearance and viewpoint
variation. The algorithm can locate human bodies accurately. The qualitative results in Fig-
ure 4 validate the superiority of our method in handling heavy occlusion and overlapping.
For these cases, structured spatial reasoning provides stronger feature representation. We
compare with two additional graph-based methods in Table 3 and show improvement.

In extensive experiments, we found some interesting phenomena. The first point is that
negative edge sampling should be fixed during training. We have tried several sampling
strategies, including random and sparse sampling. However, these sampling methods can
cause undesirable divergent behaviours, and the trained model lacks prediction generaliz-
ability, even injecting spatial position encoding for every sampling location. This point val-
idates that a holistic structure should be maintained in graph learning. The second point is
extended from the previous problem. For fixed graph sampling, there is a trade-off between
the interval of sampling on the image and computational costs. Given sufficient time this
line of research will provide further detail.

5 Conclusion and Future Work

We have introduced a new approach to explicitly incorporate spatial reasoning into human
pose estimation to improve detection accuracy. The key advantage of our method over exist-
ing ones is its ability to capture the global pairwise connection among potential joint nodes
on the image space, which provides a sufficient capacity to resolve challenging body pos-
tures. While encoding the full spatial relationship as a graph is computationally infeasible,
we have achieved efficient reasoning by learning shareable pixel-wise node embeddings that
can be used to make edge predictions via a jointly trained model. Experimental results
show a considerable accuracy improvement over the current state-of-the-art methods on the
challenging MS-COCO benchmark. In the future, we plan to use our method in several
downstream tasks such as continuous pose tracking in videos.
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Figure 3: Examples of predicted human joints and heatmaps.

Figure 4: Qualitative results of our method.
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