
DAS ET AL: KNOWLEDGE DIVERSIFICATION IN ENSEMBLES OF NEURAL NETWORKS 1

Knowledge Diversification in Ensembles of
Identical Neural Networks
Bishshoy Das
bishshoy.das@ee.iitd.ac.in

Sumantra Dutta Roy
sumantra@ee.iitd.ac.in

Indian Institute of Technology Delhi
Hauz Khas, New Delhi
Delhi, India

Abstract

Diversity in representations is key to enhancing the performance of neural networks
in an ensemble. In standard neural network ensemble techniques, two or more networks
are trained independently and their logits or predictions are combined using a voting pro-
cedure or linear combination strategy. This procedure does not incorporate the exchange
of information between the base networks of the ensemble. We propose a method for im-
proving learnt representations in an ensemble by employing feature exchange between
base models as a part of the training objective. Feature Difference Loss or FDL compels
networks in an ensemble to learn diverse features in a Euclidean sense, thereby directly
optimizing model diversity. Experiments with ensembles of two, three and four net-
works show significant performance boosts over competing ensemble techniques. The
gains are larger for datasets with fewer examples per class, such as MNIST, CIFAR-10
and CIFAR-100. Positive gains can also be observed in large datasets such as ImageNet.
The gains also generalize across several architectures from simple ConvNets to deeper
networks such as VGG and ResNets.

1 Introduction
In many applications, we have identical neural networks working in tandem to achieve a
common task. Examples of such scenarios include: (a) Self-driving vehicles where many
cars locally close to each other form a pool with each car running identical neural networks.
(b) In factory applications such as fracture detection of components on a conveyor belt, there
may be many identical neural networks present that perform a common task. (c) Climate
monitoring by a swarm of satellites: where many satellites can have identical neural net-
works onboard for the purpose of analyzing scanned images of the earth. In each of these
scenarios, multiple instances of identical neural networks are used to perform a given task.
Our aim is to devise a way of enhancing the joint knowledge of the networks residing in the
pool. If the networks are loaded with the same network weights, then the total knowledge
of the pool is no more than the knowledge of one single network. To address this issue,
we propose a training mechanism which aims to maximize knowledge diversity in the pool
by having the networks train towards attaining different feature representations. We use a
loss function (FDL: Feature Difference Loss) that directly optimizes diversity by forcing the
network to learn different feature representations from one another. We propose a custom

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

2 DAS ET AL: KNOWLEDGE DIVERSIFICATION IN ENSEMBLES OF NEURAL NETWORKS

training routine that requires feature tensors from each network to be passed to all other
networks during training. This ensures that the total knowledge existing in a pool is shared
across each network which in turn can be used to maximize diversity. By sharing the feature
tensors, it makes each network become aware of what other networks learn, and thus by
extension each network becomes aware of the total knowledge of the pool. The networks
can then be optimized towards a different optima by forcing them to oppose each other with
the feature difference loss function. In order to achieve a diverse set of features, the base
models compete against each other in a minimax fashion. Our custom training method does
not introduce any additional hyperparameters other than ones that are used in existing train-
ing routines. We provide extensive experimentation of various models and datasets rang-
ing from simple ConvNets to deeper networks such as VGG and also residual architectures
such as ResNet-18 and ResNet-50, which we train on MNIST, CIFAR-10, CIFAR-100 and
ImageNet-1K for upto four networks. We show that FDL provides consistent improvement
in all cases.

Creating an ensemble of neural networks is a common way to improve the performance
of learning-based algorithms. The ILSVRC 2015 winning residual network [15] is an en-
semble of six different base ResNet models. Training base models has mostly been done in
a model-independent way. It is intuitive that an ensemble performs better if the base models
learn different sets of features. Because each model contributes a unique set of features or
logits to the ensemble, a broader range of information is captured, increasing generalization.
Random Initialization Ensemble is a method of taking ensembles that involves changing
the initialization states of the base models in order to have different trajectories during op-
timization. One such technique is Deep Ensembles [25]. However such techniques do not
optimize the diversity of learned representations during training. It involves performing mul-
tiple experiments with various initialization and then choosing a subset of the most diverse
models as a part of the ensemble. The SnapShot Ensemble [18] [42] combines checkpoint
collection with cyclic learning rate methods such as SGD with warm restarts [30] to generate
ensembles. Fast Geometric Ensemble [11] traverses high accuracy paths between modes to
generate ensembles by combining modes. Checkpoint ensembles [6] uses checkpoints dur-
ing training as ensemble candidates, which are then combined near the end of training to
generate an ensemble. Adaptive Ensemble [19] based on Confidence Intervals reduces com-
putation overhead by discarding ensemble executions for input samples with high softmax
outputs. Auto-Ensemble [44] creates an ensemble using checkpoint collection and a learning
rate scheduling algorithm.

2 Method

2.1 Ensemble Architecture

We start with N identical base networks. Without loss of generality, we portray the N = 2
case. In Fig. 1(a), we show networks N1 and N2. The two networks produce two sets of
prediction vectors independently, and then those two vectors are concatenated and fed to an
ensemble head network, NE . The ensemble head comprises a single layer of 1×1 convolu-
tion kernels and it learns the optimal linear combination to combine the prediction vectors
at its input. All networks N1, N2 and NE are trained using cross-entropy loss. However, we
also have other losses during training which we portray in next section.

If v⃗1 and v⃗2 are the prediction vectors for an input mini-batch I, then for networks N1 and

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Lakshminarayanan, Pritzel, and Blundell} 2017

Citation
Citation
{Huang, Li, Pleiss, Liu, Hopcroft, and Weinberger} 2017

Citation
Citation
{Wen, Gao, and Li} 2019

Citation
Citation
{Loshchilov and Hutter} 2016

Citation
Citation
{Garipov, Izmailov, Podoprikhin, Vetrov, and Wilson} 2018

Citation
Citation
{Chen, Lundberg, and Lee} 2017

Citation
Citation
{Inoue} 2019

Citation
Citation
{Yang and Wang} 2020

DAS ET AL: KNOWLEDGE DIVERSIFICATION IN ENSEMBLES OF NEURAL NETWORKS 3

Figure 1: (a) The architecture of the ensemble head network. Predictions of two identical
networks are combined into a single prediction vector using 2N linear units or 2N (1× 1)
convolution. (b) The architecture of four identical neural networks trained with FDL. All
networks share a common minibatch. Features are exchanged and the networks weights
are updated so as to maximize feature differences between them. The double sided arrows
represent the different loss functions and their position indicates the location where they are
invoked. Prediction vectors (P1, P2, P3, P4) are combined using an ensemble head to create
PE.

N2 respectively, we have:
v⃗1 = (v11, · · · ,v1p) = F1 ∗ I (1)

v⃗2 = (v21, · · · ,v2p) = F2 ∗ I (2)

where F1 and F2 represents the parameters of N1 and N2 respectively, and ∗ is the convolu-
tion operator.

The output of the ensemble head can then be represented as,

v⃗e = (v1, · · · ,vp) = K ∗ (v11, · · · ,v1p,v21, · · · ,v2p) (3)

where K is a set of 1×1 convolution kernels.
During the training of the ensemble head, no gradient is passed back to the base networks.

The training routine of the base networks and the ensemble head is performed in five phases,
which we describe in section 2.3.

2.2 Feature Difference Loss (FDL)
Convolutional layers operate as 3D filters to generate output images from input images. All
convolutional layer features can most closely be interpreted as pixels in an image, and the
L2 loss function is the most effective method for comparing pixels. Given a convolutional
base neural network N, we define Wi as the ith convolutional layer of the network. A feature
vector Fi−1 is fed into Wi, and the output Fi is generated.

Fi =Wi ∗Fi−1 (4)

4 DAS ET AL: KNOWLEDGE DIVERSIFICATION IN ENSEMBLES OF NEURAL NETWORKS

We denote the shape of the tensor Fi as (B,C,H,W) where B is the number of images in a
batch, C is the number of channels of each image and H ×W is the resolution of each image.
In Fig. 1(b), we show the architecture and the computation graph of four neural networks
trained using our proposed method. First we portray the two network case, following which
we extend our method for ensembles of more than two networks in section 2.3. Given, two
identical networks N1 and N2, we compute the feature difference loss for the ith layer as:

LN1,N2
i =

1
BCHW

B−1

∑
b=0

C−1

∑
c=0

H−1

∑
h=0

W−1

∑
w=0

(FN1
i (b,c,h,w)−FN2

i (b,c,h,w))2 (5)

The value of the feature loss is then summed up and averaged over the depth (D) of the
network as:

LN1,N2
FDL =

1
D

D−1

∑
d=0

LN1,N2
d (6)

Given the cross-entropy loss of network N1 and N2 as L1 and L2 respectively, we define
the similarity loss function as:

SN1,N2 = (L1 −L2)
2 (7)

Ideally, we want to perform maximization of the feature difference loss, Eq. 6. However,
as is commonly followed in the training routines of generative adversarial networks (GANs),
the discriminator’s loss functions are not maximized, rather the negative of it is minimized.
Here too, we minimize the negative of the FDL loss function, Eq. 6.

We pose the optimization criterion as:

N∗
E(W) = argmin

W
(−LN1,N2

FDL + k SN1,N2 + k1 LX (ŷN1 ,y)+ k2 LX (ŷN2 ,y)) (8)

LX is the cross-entropy loss function that acts on the the prediction vector ŷ and the
ground truth y. The constants k, k1, k2 controls the weights (‘importance’) of the individual
losses. However, directly optimizing Eq. 8 requires careful tuning of the constants. To avoid
this, we train the entire system in several different phases with each phase targeting a single
loss function and it entirely eliminates the task of tuning the constants of Eq. 8.

2.3 Training Phases
2.3.1 Phase 0

To train the ensemble network with the different losses of Eq. 8, we develop a training
algorithm that is akin to the way generative adversarial networks are trained, i.e. in phases.
We have five different phases of training as portrayed in Fig. 2. Without loss of generality
we discuss the N = 2 case, i.e. two base models and a single ensemble head as the ensemble
network. During training, we train N1 and N2 independently from a different seed for a few
epochs. We denote this pretraining phase as the zero’th phase as it occurs only once in the
training cycle. After the pretraining phase is completed, phase 1 through 4 repeats in a cycle
occuring once every iteration until convergence. If we invoke the FDL loss function from the
very first iteration (i.e. without invoking phase zero), the training progresses haphazardly,
leading to instability. So we pretrain N1 and N2 for a few epochs depending on the dataset.
Smaller datasets such as the CIFAR datasets, the number of pretraining epochs are often just

DAS ET AL: KNOWLEDGE DIVERSIFICATION IN ENSEMBLES OF NEURAL NETWORKS 5

Figure 2: The training pipeline of two networks N1, N2 along with the ensemble head net-
work trained with FDL loss. The red dotted line indicates the flow of gradients during back-
propagation.

one epoch. Larger datasets require more pretraining. We mention all training details and
hyperparameters for complete reproducibility in the supplementary section of this article.
It is important to note that we stop training much before convergence. At this state, the
networks have not reached their convergence point yet. If we invoke the FDL loss from this
point onwards, the two neural networks diverge from their paths and arrive at different and
diverse optimal points. The FDL loss maximizes the gap between the two optimal points,
by making the networks compete against each other. The farther the final optimal points of
each base network, the better it is for the ensemble as a whole.

2.3.2 Phase 1 and 2

In the first phase, we train the base models with a single minibatch from the training dataset
and immediately move on to the next phase. In the second phase of training, we invoke
the similarity loss. In a two network setting, we take the loss values of the two networks
and compute the mean squared error between them. Since the two loss ‘tensors’ are a part
of the computation graph, the effect of the mean squared error computation backpropagates
through the entire network. The aim of the similarity loss function is to stabilize training.
With the similarity loss, the cross-entropy loss values are kept within a reasonable range of
one another. The reason why we choose to compare the loss values instead of the prediction
vectors is the following. The loss value (a scalar) represents the height of a point on the loss
landscape whose value is determined by the parameters of the network and the input vector
(a minibatch of training images). Several different points on this loss landscape can have
the same loss value. By comparing the loss values of the base models, we force the network
to arrive at a ‘similar’ quality optima at convergence. Due to the fact that stability issues
are typical when training neural networks with negative loss landscapes (FDL or GAN), the
presence of the similarity loss function is essential. If in case we train the base models to
only minimize the negative of the FDL loss without having the similarity loss in the training
pipeline, we observe that in some cases the weights of one of the base networks goes to
zero, while the other network arrives at a perfectly good optimal convergence point. This
is intuitively plausible, as it is optimal to ‘sacrifice’ the accuracy of one of the networks
to have the FDL loss at a maximum value since the feature vector differences will then be
at their greatest. The presence of the similarity loss prohibits this phenomena. Also, in
our formulation of the similarity loss we do not compare the prediction vectors and instead
choose to just compare the loss values. This is because it is possible for the networks to

6 DAS ET AL: KNOWLEDGE DIVERSIFICATION IN ENSEMBLES OF NEURAL NETWORKS

Figure 3: We perform experiments on the following models. (a): A simple two layer network
on MNIST. (b): Deeper networks, VGG-16 and ResNet-20/32 on CIFAR-10/100. (c): Larger
models: ResNet variants on ImageNet-1K.

have the same loss value for different prediction vectors. Comparing the prediction vectors
would instead lead the networks to arrive at the exact same optimal point, which will lead
to a loss in ensemble diversity. A group of networks that output the same prediction vectors
for any input images does not provide any additional information to the ensemble. In case
of N networks, we find that invoking the similarity loss between every pair of NC2 networks
is computationally intensive and so we randomly choose any two networks per iteration and
invoke the similarity loss objective only on those two networks. A uniform random sampler
ensures that all pairs of networks are choosen with equal likelihood.

2.3.3 Phase 3

In the third phase, we invoke the FDL loss. In this step, we collect all output activations
from only the convolutional layers. We broadcast the activation tensors to all other networks
in the pool, and compare the mean squared difference between them in a pairwise fashion
as per Eq. 5. This means that for N networks, the total number of transfers is NC2. This
is crucially important as it ensures information exchange between all networks in the pool,
which is the crux of our algorithm. The final FDL loss for N networks is the average over all
NC2 transfers. Instead of maximizing the FDL loss, we minimize the negative of it.

L∗
FDL =

1
NC2

N−1

∑
i=1

N

∑
j=i+1

Li, j
FDL (9)

2.3.4 Phase 4

Finally in the fourth phase of training, we train the ensemble head network NE . The input to
NE is a concatenated array of all logits accumulated from all base networks. While training
the head network, we do not pass the gradients back to the base networks. This is an impor-
tant step required to measure the efficacy of the FDL loss. If the gradient that is computed at
the ensemble end is used to update the weights of the base networks, then there is a possibil-
ity that the base networks improve the ensemble performance through this gradient update
and not through FDL. Hence we choose to keep the weights of the base networks completely
disjoint from the weights of the NE network.

In none of the training phases, we optimize the ensemble’s performance by the loss
computed at the ensemble head. Instead, we use feature exchange and FDL to allow the

DAS ET AL: KNOWLEDGE DIVERSIFICATION IN ENSEMBLES OF NEURAL NETWORKS 7

Figure 4: (a) Number of Filters (M) vs Accuracy plot of a one layer ConvNet. Red line
indicates single network of M filters. Blue line indicates FDL ensemble of 2x networks
(M/2 filters each). (b) Multi-network FDL ensemble accuracies for various models (VGG-
16, ResNet-20, ResNet-32) on (CIFAR-10 and CIFAR-100).

network to arrive at better optimas, by nudging it towards different solutions where the learnt
feature representations are diverse. Each iteration comprises phase 1 through 4 exactly once.
The process continues until convergence.

3 Experiments

Our first experiment consists of a simple network (Fig. 3(a)) that has a single convolution
layer with M units of 3×3 filters. Training on the MNIST dataset, we vary M from 1 to 256,
and record the performance of the single full-width network (of M filters) and the ensemble
performance of two half-width networks (M/2 filters each) (Fig. 4(a)). We observe that in
every case, the two network FDL ensemble learns better representations and outperform the
single full-width network.

We experiment with deeper networks, such as VGG-16 [38], ResNet-20 and ResNet-32
[15] and with the CIFAR-10 and CIFAR-100 [22] datasets. We use a single layer of 1× 1
convolution units as the ensemble head, Fig. 3(b). From Table 1, we observe that ensembles
trained with FDL outperform other methods. In CIFAR-10 experiments, FDL outperforms
AE Full by 1.0%, SSE by 0.88%, FGE by 0.59% and improves over the single network

Table 1: Comparisons of ensemble methods in image classification task, performed on the
CIFAR-10 and CIFAR-100 datasets (left) and ImageNet-1K (right).

Method Accuracy (%)

CIFAR-10 CIFAR-100

VGG-16 (1x) baseline 93.66 74.61
VGG-16 RIE (2x) 93.7 76.95
VGG-16 SSE [18] 94.05 75.31
VGG-16 FGE [11] 94.34 76.46
VGG-16 AE Full [44] 93.93 72.16
VGG-16 FDL (2x) [ours] 94.93 77.02

Method
Accuracy (%)

ImageNet-1K

ResNet-50 (1x) baseline 76.38
ResNet-50 RIE (2x) 76.96
ResNet-50 SSE [18] 76.67
ResNet-50 FGE [11] 76.69
ResNet-50 FDL (2x) [ours] 77.06

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Huang, Li, Pleiss, Liu, Hopcroft, and Weinberger} 2017

Citation
Citation
{Garipov, Izmailov, Podoprikhin, Vetrov, and Wilson} 2018

Citation
Citation
{Yang and Wang} 2020

Citation
Citation
{Huang, Li, Pleiss, Liu, Hopcroft, and Weinberger} 2017

Citation
Citation
{Garipov, Izmailov, Podoprikhin, Vetrov, and Wilson} 2018

8 DAS ET AL: KNOWLEDGE DIVERSIFICATION IN ENSEMBLES OF NEURAL NETWORKS

Figure 5: 2x VGG-16 ensemble training on CIFAR-100. (a) Loss and accuracy plots. (b)
Similarity loss plots. (c) Plot of Mean Squared Feature Differences during the training.

baseline by 1.27%. In CIFAR-100 experiments, it outperforms AE Full by 4.86%, SSE
by 1.71%, FGE by 0.56% and improves over the single network baseline by 2.41%. We
additionally perform multi-netowrk FDL ensembles with two, three and four networks with
each of VGG-16, ResNet-20 and ResNet-32 on both CIFAR-10 and CIFAR-100 datasets.
We portray the results in Fig. 4(b) and also in the supplementary section. For CIFAR-10,
4x FDL ensembles outperform the baseline by 1.56% for VGG-16, 2.24% for ResNet-20
and 1.67%. In case of CIFAR-100, 4x FDL ensembles outperform the baseline by 3.73%
for VGG-16, 5.89% for ResNet-20 and 6.88% for ResNet-32. On the ImageNet-1K [35]
(Fig. 3(c)), we see a significant improvement of 1.58% in ResNet-18, and an improvement
of 0.67% in ResNet-50 (Table 2). 2x ResNet-50 models trained with FDL outperforms SSE
by 0.39% and FGE by 0.37% (Table 1).

4 Ablation Studies
We discuss the efficacy of FDL loss by performing the same training routine of Fig. 2, with
the same hyperparameters, but as two separate experiments: ‘with’ FDL and ‘without’ FDL.
In Table 2 (right), column [C] denotes the accuracies of ensembles of two identical base
networks trained ‘with’ and ‘without’ FDL. Column [A] denotes the performance of each
base network for which the ensemble in [C] is obtained. Column [B] denotes the individual
best accuracy obtained during the entire training process. We observe that with FDL, not only
the ensemble performance is better than without it, but also the base models trained with FDL
outperform base models trained without FDL. We observe that FDL enables ensmebles of
two base ResNet models to achieve higher accuracies over the standard non-FDL methods.
This indicates that FDL is a diversity enoucouraging loss function.

Table 2: Left: Test accuracies on the test set of ImageNet-1K. Right: Results of ablation
study performed on the ResNet-18 network on ImageNet. We observe that FDL ensemble
performs better than the non-FDL emsemble.

Model
ImageNet Accuracy (%)

1x 2x 2x FDL
Network Ensemble Ensemble

ResNet-18 70.012 71.014 71.594
ResNet-50 76.386 76.964 77.06

Model Network 1 Network 2 Ensemble

[A] [B] [A] [B] [C]

ResNet-18 69.902 70.012 69.632 69.748 71.014
+ FDL 69.892 69.998 69.666 69.73 71.594

ResNet-50 76.042 76.386 75.97 76.306 76.964
+ FDL 76.186 76.246 76.052 76.108 77.06

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, etprotect unhbox voidb@x protect penalty @M {}al.} 2015

DAS ET AL: KNOWLEDGE DIVERSIFICATION IN ENSEMBLES OF NEURAL NETWORKS 9

Figure 6: Differences between feature maps of two VGG-16 base models trained on the
CIFAR-100 with and without FDL. The intensity of yellow on each feature map indicates
the strength of the mean squared difference between two feature maps from the same layer
and the same channel.

We also provide a visualization of feature difference maps between two VGG-16 models
in Fig. 6 trained with and without FDL. We observe that FDL forces higher feature differ-
ences among base models, which we hypothesize as the primary contributor to increase in
diversity, leading to the observed higher accuracies in FDL ensembles. In Fig. 5(a) we plot
different loss plots and test accuracy plots for 2x VGG-16 ensemble on CIFAR-100. The
FDL loss decreases initially (red line). After 200 epochs it starts to increase, even though the
cross-entropy loss of N1 keeps on decreasing (blue line). The yellow circle marks the epoch
where maximum ensemble accuracy is achieved. In Fig. 5(b, c) we perform additional abla-
tion studies, where we train the networks with FDL and without FDL. In Fig. 5(b), we plot
the similarity loss during training. We observe that in both cases the networks final attain
close to zero similarity loss. This indicates that both networks achieve similar optimal points
at convergence. However, in case of FDL, the inital few iterations the similarity loss is quite
high and fluctuates rapidly. This indicates that with FDL the networks’ states initially moves
away from each other jumping across different local optimas as it explores the entire loss
landscape. Whereas in the without-FDL scenario, the similarity loss is very close to zero
right from the beginning of training. In Fig. 5(c) we plot the Mean Squared Feature Differ-
ences during training for both ‘with’ and ‘without’ FDL cases. We observe that FDL loss
steadily decreases to zero if the networks are not trained with it (blue line), but increases
later down during training (red line)1.

1Code samples for all our experiments can be found at: https://github.com/bishshoy/FDL

https://github.com/bishshoy/FDL

10DAS ET AL: KNOWLEDGE DIVERSIFICATION IN ENSEMBLES OF NEURAL NETWORKS

5 Related Works

Several methods exist for learning ensembles such as [14], [23] and [8]. Negative correlation
learning [1] and error independent ensembling [13] has also been utilized to create ensem-
bles. In many cases, the dataset is often divided into many overlapping or non-overlapping
subsets and fed to the base models and with enough hardware, the models can be simul-
taneously trained [12] [47] and their predictions aggregated. Often, the base models are
trained with different hyperparameters to reach different solution points. The base models
are combined using model averaging, various types of voting (majority voting, soft voting
or plurality voting) or weighted consensus (boosting voting) [43]. In collaborative learning
[39], many ensemble head networks are used on the same network to improve robustness
and generalization. A similar idea is explored in [49] and from the perspective of pruning in
[26].

Some well-known techniques for obtaining ensembles from base models include Ran-
dom Forest [5] [17], Bagging [4], Boosting [36], and AdaBoost [37], Random Layer Sam-
pling [27]. EnsembleBench [43] tries to minimize the number of possible ensemble candi-
dates required for evaluation while maximizing overall ensemble performance. It is widely
accepted that maximizing diversity is critical to maximizing ensemble benefits. It is obvious
that if all the base models are exact replicas of each other, the ensemble’s performance is no
better than any of its base models. Correlation between diversity and ensemble performance
is explored in [24] and [32].

Co-training losses ensure that all base models eventually perform similarly with the en-
semble output being an average of all predictions. Student-teacher based ensembles has been
explored in [31, 47] using distillation [16]. Co-training has been used to achieve diversifi-
cation [2, 3, 12, 34, 45]. Neural Architecture Search (NAS) based methods have also been
used to create ensembles [7, 9, 10, 21, 41, 46, 50]. Loss functions and training routines that
directly target model diversity has been explored in [20, 28, 29, 33, 40, 48].

6 Conclusion

We present a method of optimizing ensemble performance of identical networks by intro-
ducing feature difference losses and a custom training routine. FDL maximizes feature dif-
ferences by pushing the networks towards more diverse solutions. From experiments on
shallow networks and smaller datasets, to larger models and larger datasets show positive
performance gains in all scenarios. FDL encourages high diversity in base model by directly
optimizing Euclidean difference between pairs of feature sets across all NC2 combinations
of N networks.

References
[1] Monther Alhamdoosh and Dianhui Wang. Fast decorrelated neural network ensembles

with random weights. Information Sciences, 264:104–117, 2014.

[2] Tanmay Batra and Devi Parikh. Cooperative learning with visual attributes. arXiv
preprint arXiv:1705.05512, 2017.

Citation
Citation
{Hansen and Salamon} 1990

Citation
Citation
{Krogh and Vedelsby} 1994

Citation
Citation
{Dietterich} 2000

Citation
Citation
{Alhamdoosh and Wang} 2014

Citation
Citation
{Giacinto and Roli} 2001

Citation
Citation
{Ge, Chen, and Li} 2020

Citation
Citation
{Zhang, Xiang, Hospedales, and Lu} 2018

Citation
Citation
{Wu, Liu, Xie, Bae, Chow, and Wei} 2020

Citation
Citation
{Song and Chai} 2018

Citation
Citation
{Zhou, Wu, and Tang} 2002

Citation
Citation
{Le, Vo, and Thoai} 2020

Citation
Citation
{Breiman} 2001

Citation
Citation
{Ho} 1995

Citation
Citation
{Breiman} 1996

Citation
Citation
{Schapire} 1999

Citation
Citation
{Schapire} 2013

Citation
Citation
{Lee, Lee, Kim, and Ro} 2020

Citation
Citation
{Wu, Liu, Xie, Bae, Chow, and Wei} 2020

Citation
Citation
{Kuncheva and Whitaker} 2003

Citation
Citation
{Partridge and Krzanowski} 1997

Citation
Citation
{Lyu, Zhao, Ma, and Chen} 2021

Citation
Citation
{Zhang, Xiang, Hospedales, and Lu} 2018

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{Batra and Parikh} 2017

Citation
Citation
{Blum and Mitchell} 1998

Citation
Citation
{Ge, Chen, and Li} 2020

Citation
Citation
{Qiao, Shen, Zhang, Wang, and Yuille} 2018

Citation
Citation
{Yang, Zhu, Chen, Yan, Zhang, and Willis} 2020

Citation
Citation
{Cortes, Gonzalvo, Kuznetsov, Mohri, and Yang} 2017

Citation
Citation
{Elsken, Metzen, and Hutter} 2019

Citation
Citation
{Fang, Chen, Zhang, Zhang, Huang, Meng, Liu, and Wang} 2019

Citation
Citation
{Jin, Song, and Hu} 2019

Citation
Citation
{Weill, Gonzalvo, Kuznetsov, Yang, Yak, Mazzawi, Hotaj, Jerfel, Macko, Adlam, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Zaidi, Zela, Elsken, Holmes, Hutter, and Teh} 2021

Citation
Citation
{Zoph and Le} 2016

Citation
Citation
{Jain, Liu, Mueller, and Gifford} 2020

Citation
Citation
{Lee, Purushwalkam, Cogswell, Crandall, and Batra} 2015

Citation
Citation
{Liu and Yao} 1999

Citation
Citation
{Pearce, Leibfried, and Brintrup} 2020

Citation
Citation
{Webb, Reynolds, Iliescu, Reeve, Luj{á}n, and Brown} 2019

Citation
Citation
{Zhou, Wang, and Bilmes} 2018

DAS ET AL: KNOWLEDGE DIVERSIFICATION IN ENSEMBLES OF NEURAL NETWORKS 11

[3] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-
training. In Proceedings of the eleventh annual conference on Computational learning
theory, pages 92–100, 1998.

[4] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[5] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[6] Hugh Chen, Scott Lundberg, and Su-In Lee. Checkpoint ensembles: Ensemble meth-
ods from a single training process. arXiv preprint arXiv:1710.03282, 2017.

[7] Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott Yang.
Adanet: Adaptive structural learning of artificial neural networks. In International
conference on machine learning, pages 874–883. PMLR, 2017.

[8] Thomas G Dietterich. Ensemble methods in machine learning. In International work-
shop on multiple classifier systems, pages 1–15. Springer, 2000.

[9] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A
survey. The Journal of Machine Learning Research, 20(1):1997–2017, 2019.

[10] Jiemin Fang, Yukang Chen, Xinbang Zhang, Qian Zhang, Chang Huang, Gaofeng
Meng, Wenyu Liu, and Xinggang Wang. Eat-nas: elastic architecture transfer for accel-
erating large-scale neural architecture search. arXiv preprint arXiv:1901.05884, 2019.

[11] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry Vetrov, and Andrew Gor-
don Wilson. Loss surfaces, mode connectivity, and fast ensembling of dnns. In Pro-
ceedings of the 32nd International Conference on Neural Information Processing Sys-
tems, pages 8803–8812, 2018.

[12] Yixiao Ge, Dapeng Chen, and Hongsheng Li. Mutual mean-teaching: Pseudo label
refinery for unsupervised domain adaptation on person re-identification. ICLR, 2020.

[13] Giorgio Giacinto and Fabio Roli. Design of effective neural network ensembles for
image classification purposes. Image and Vision Computing, 19(9-10):699–707, 2001.

[14] Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE transactions
on pattern analysis and machine intelligence, 12(10):993–1001, 1990.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

[17] Tin Kam Ho. Random decision forests. In Proceedings of 3rd international conference
on document analysis and recognition, volume 1, pages 278–282. IEEE, 1995.

[18] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Wein-
berger. Snapshot ensembles: Train 1, get m for free. arXiv preprint arXiv:1704.00109,
2017.

12DAS ET AL: KNOWLEDGE DIVERSIFICATION IN ENSEMBLES OF NEURAL NETWORKS

[19] Hiroshi Inoue. Adaptive ensemble prediction for deep neural networks based on confi-
dence level. In The 22nd International Conference on Artificial Intelligence and Statis-
tics, pages 1284–1293. PMLR, 2019.

[20] Siddhartha Jain, Ge Liu, Jonas Mueller, and David Gifford. Maximizing overall diver-
sity for improved uncertainty estimates in deep ensembles. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 4264–4271, 2020.

[21] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural architecture
search system. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1946–1956, 2019.

[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[23] Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and
active learning. Advances in neural information processing systems, 7, 1994.

[24] Ludmila I Kuncheva and Christopher J Whitaker. Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy. Machine learning, 51(2):
181–207, 2003.

[25] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scal-
able predictive uncertainty estimation using deep ensembles. Advances in neural infor-
mation processing systems, 30, 2017.

[26] Duong H Le, Trung-Nhan Vo, and Nam Thoai. Paying more attention to snapshots
of iterative pruning: Improving model compression via ensemble distillation. arXiv
preprint arXiv:2006.11487, 2020.

[27] Hakmin Lee, Hong Joo Lee, Seong Tae Kim, and Yong Man Ro. Robust ensemble
model training via random layer sampling against adversarial attack. arXiv preprint
arXiv:2005.10757, 2020.

[28] Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David Crandall, and Dhruv Ba-
tra. Why m heads are better than one: Training a diverse ensemble of deep networks.
arXiv preprint arXiv:1511.06314, 2015.

[29] Yong Liu and Xin Yao. Ensemble learning via negative correlation. Neural networks,
12(10):1399–1404, 1999.

[30] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983, 2016.

[31] Shuchang Lyu, Qi Zhao, Yujing Ma, and Lijiang Chen. Make baseline model stronger:
Embedded knowledge distillation in weight-sharing based ensemble network. 2021.

[32] Derek Partridge and Wojtek Krzanowski. Software diversity: practical statistics for its
measurement and exploitation. Information and software technology, 39(10):707–717,
1997.

DAS ET AL: KNOWLEDGE DIVERSIFICATION IN ENSEMBLES OF NEURAL NETWORKS 13

[33] Tim Pearce, Felix Leibfried, and Alexandra Brintrup. Uncertainty in neural networks:
Approximately bayesian ensembling. In International conference on artificial intelli-
gence and statistics, pages 234–244. PMLR, 2020.

[34] Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, and Alan Yuille. Deep co-training
for semi-supervised image recognition. In Proceedings of the european conference on
computer vision (eccv), pages 135–152, 2018.

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. International journal of computer vision, 115
(3):211–252, 2015.

[36] Robert E Schapire. A brief introduction to boosting. In Ijcai, volume 99, pages 1401–
1406. Citeseer, 1999.

[37] Robert E Schapire. Explaining adaboost. In Empirical inference, pages 37–52.
Springer, 2013.

[38] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[39] Guocong Song and Wei Chai. Collaborative learning for deep neural networks. ICLR,
2018.

[40] Andrew M Webb, Charles Reynolds, Dan-Andrei Iliescu, Henry Reeve, Mikel Luján,
and Gavin Brown. Joint training of neural network ensembles. stat, 1050:12, 2019.

[41] Charles Weill, Javier Gonzalvo, Vitaly Kuznetsov, Scott Yang, Scott Yak, Hanna Maz-
zawi, Eugen Hotaj, Ghassen Jerfel, Vladimir Macko, Ben Adlam, et al. Adanet: A
scalable and flexible framework for automatically learning ensembles. arXiv preprint
arXiv:1905.00080, 2019.

[42] Long Wen, Liang Gao, and Xinyu Li. A new snapshot ensemble convolutional neural
network for fault diagnosis. Ieee Access, 7:32037–32047, 2019.

[43] Yanzhao Wu, Ling Liu, Zhongwei Xie, Juhyun Bae, Ka-Ho Chow, and Wenqi Wei.
Promoting high diversity ensemble learning with ensemblebench. arXiv preprint
arXiv:2010.10623, 2020.

[44] Jun Yang and Fei Wang. Auto-ensemble: An adaptive learning rate scheduling based
deep learning model ensembling. IEEE Access, 8:217499–217509, 2020.

[45] Taojiannan Yang, Sijie Zhu, Chen Chen, Shen Yan, Mi Zhang, and Andrew Willis.
Mutualnet: Adaptive convnet via mutual learning from network width and resolution.
In European Conference on Computer Vision, pages 299–315. Springer, 2020.

[46] Sheheryar Zaidi, Arber Zela, Thomas Elsken, Chris C Holmes, Frank Hutter, and Yee
Teh. Neural ensemble search for uncertainty estimation and dataset shift. Advances in
Neural Information Processing Systems, 34:7898–7911, 2021.

14DAS ET AL: KNOWLEDGE DIVERSIFICATION IN ENSEMBLES OF NEURAL NETWORKS

[47] Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan Lu. Deep mutual learn-
ing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4320–4328, 2018.

[48] Tianyi Zhou, Shengjie Wang, and Jeff A Bilmes. Diverse ensemble evolution: Curricu-
lum data-model marriage. Advances in Neural Information Processing Systems, 31,
2018.

[49] Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: many could
be better than all. Artificial intelligence, 137(1-2):239–263, 2002.

[50] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578, 2016.

