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1. Most continual learning issues are in the ROI-heads
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Selective Distillation (solves A)
Don't use proposals overlapping with new GT in distillation loss
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Distillation 2 GOALS

losses

— Retain old knowledge from former tasks present in the
teacher model, by using knowledge distillation from the

unsuccessful teacher to the student model
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2. Careful application of distillation improves effectiveness

3. Room for improvement by leveraging rehearsal techniques (see paper)

Learn new tasks from newly annotated data
as well as possible. These can be new classes or
new domains.

New objects (e.g. person) were present in old task's images (e.g. horse).
The teacher has learned to classify these as background or another
class and these Fredictions are used in knowledge distillation. This is

problem when overlap is high (A) and lower (B).

Huber Loss (solves B)
Penalizes large differences less than MSE

MSE Loss T
Huber Loss

This dominates
all other losses
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