

RE-EXAMINING DISTILLATION FOR CONTINUAL OBJECT DETECTION

Eli Verwimp¹ - Kuo Yang² - Sarah Parisot² - Lanqing Hong² - Steven McDonagh² - Eduardo Pérez Pellitero² - Matthias De Lange¹ - Tinne Tuytelaars¹

successful

unsuccessful

Classification &

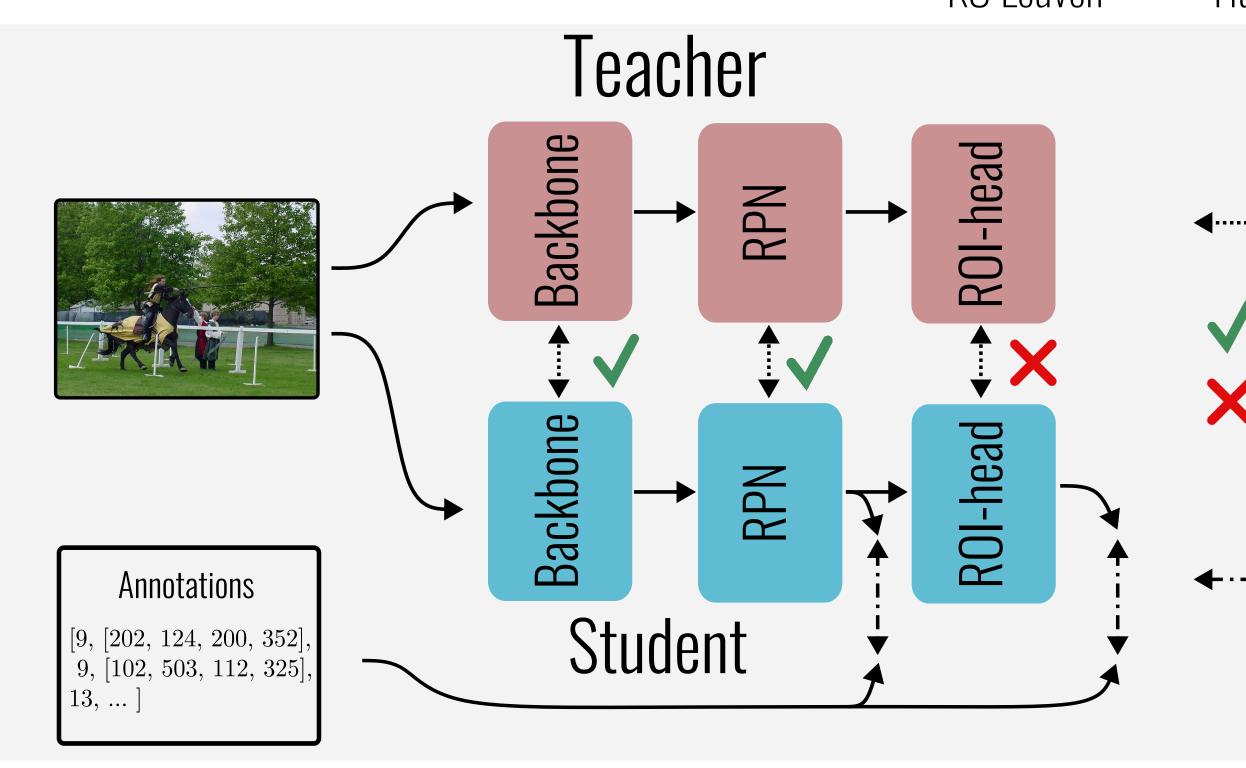
19+1

60

regression

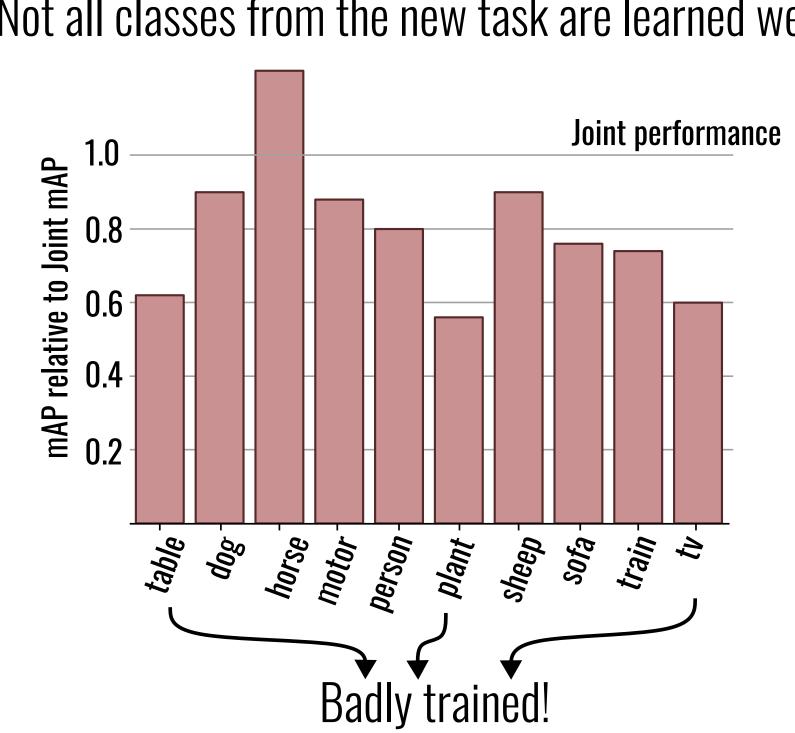
losses

¹ KU Leuven - ² Huawei Noah's Ark Lab



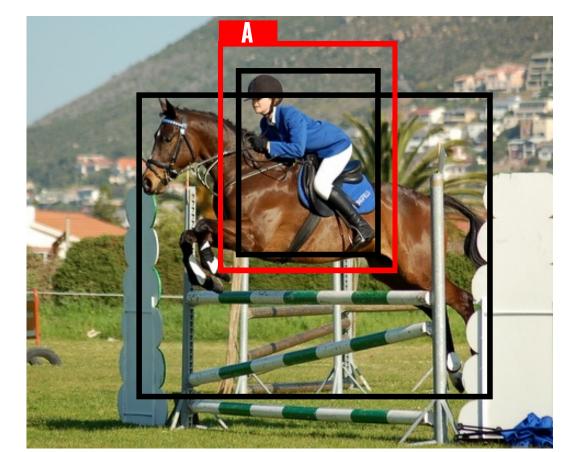
Retain old knowledge from former tasks present in the teacher model, by using knowledge distillation from the teacher to the student model

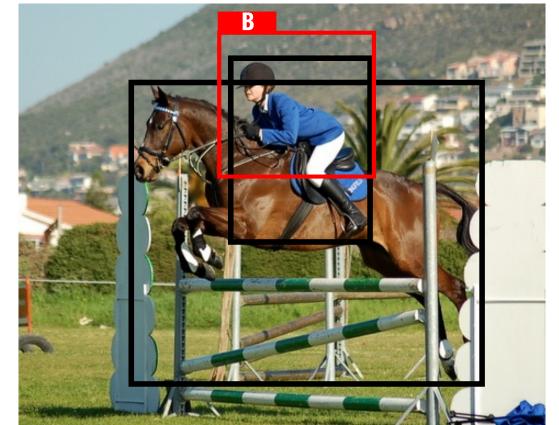
Learn new tasks from newly annotated data as well as possible. These can be new classes or new domains.



Not all classes from the new task are learned well

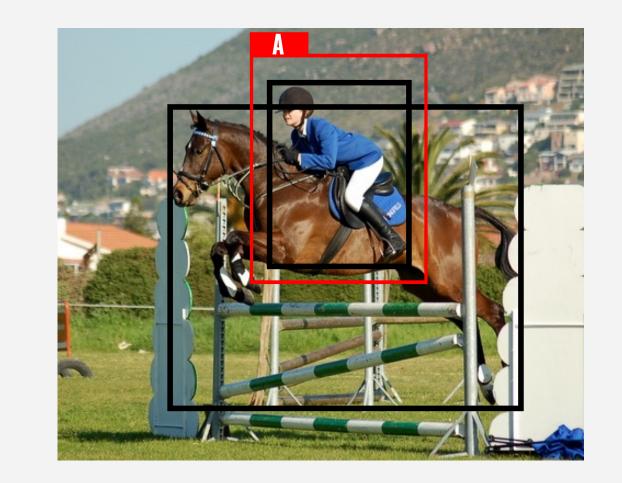
New objects (e.g. person) were present in old task's images (e.g. horse). The teacher has learned to classify these as background or another class and these predictions are used in knowledge distillation. This is a problem when overlap is high (A) and lower (B).





Solution

Selective Distillation (solves A) Don't use proposals overlapping with new GT in distillation loss



10+10

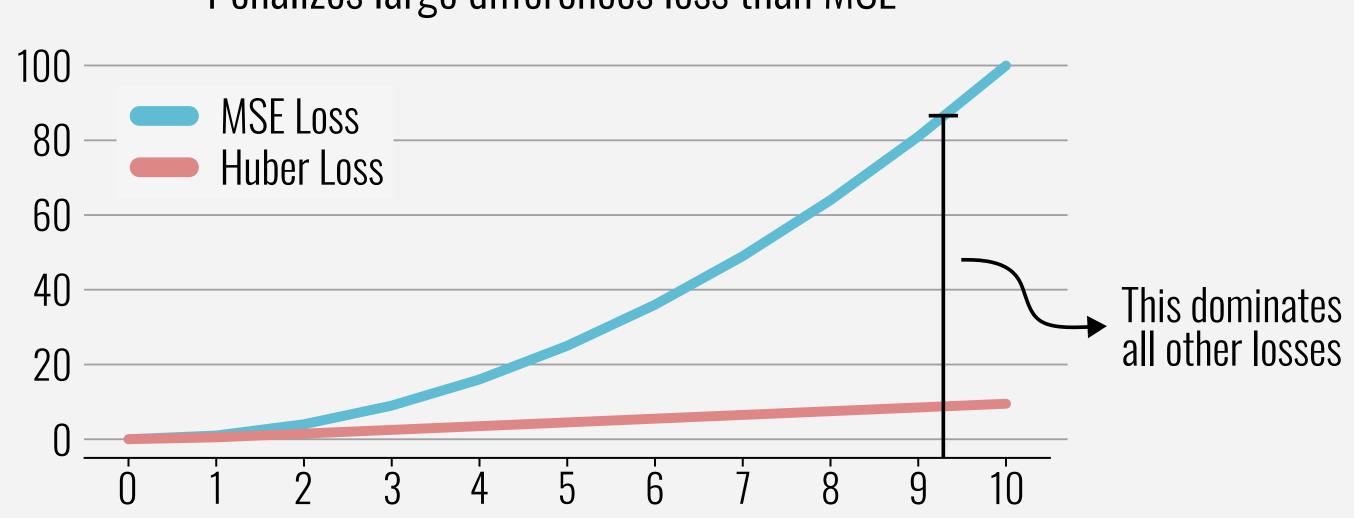
80

60

50

mAP per task

Huber Loss (solves B)
Penalizes large differences less than MSE



Conclusion

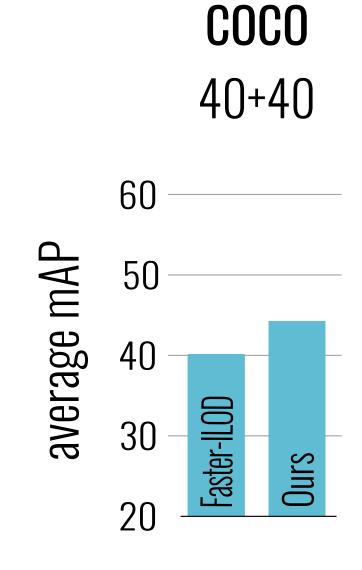
- 1. Most continual learning issues are in the ROI-heads
- 2. Careful application of distillation improves effectiveness
- 3. Room for improvement by leveraging rehearsal techniques (see paper)

VOC

15+5

80

60



Scan for online paper!

