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Figure 1: We present a search-and-learn paradigm that starts from an unlabeled dataset and
a known image formation model, and learns visual concepts in the form of a dictionary of
base elements along with their placement parameters to best explain the input dataset. Here
we show results on the MNIST dataset, Clevr renderings, and a 3D sprite dataset.

Abstract

Finding an unsupervised decomposition of an image into individual objects is a key
step to leverage compositionality and to perform symbolic reasoning. Traditionally, this
problem is solved using amortized inference, which does not generalize beyond the scope
of the training data, may sometimes miss correct decompositions, and requires large
amounts of training data. We propose finding a decomposition using direct, unamortized
optimization, via a combination of a gradient-based optimization for differentiable object
properties and global search for non-differentiable properties. We show that using direct
optimization is more generalizable, misses fewer correct decompositions, and typically
requires less data than methods based on amortized inference. This highlights a weakness
of the current prevalent practice of using amortized inference that can potentially be
improved by integrating more direct optimization elements.
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1 Introduction
Reconstructing an input signal as a composition of different meaningful parts is a long stand-
ing goal in data analysis. The ability to decompose a signal into meaningful parts not only re-
sults in an interpretable abstraction, but also improves sampling efficiency and generalization
of learning-based algorithms. Notable classical unsupervised methods for part/parameter de-
composition include Principal Component Analysis (PCA), Independent Component Anal-
ysis (ICA), Dictionary Learning, Matching pursuits. In computer vision, the output of these
methods are regularly used for classification, denoising, texture propagation, etc.

In the context of images, amortised optimization with neural networks is currently the
unquestioned practice in self-supervised decomposition [2, 15, 28, 40]. Amortised optimiza-
tion is fast and has the potential to avoid local minima, but can be inexact and is known to
struggle with more complex settings. For this reason, several well-known works like Alp-
haZero, AlphaGo, and AlphaFold mix direct search with amortised optimization.

We pose the question if direct optimization can also benefit unsupervised scene decom-
position. In this paper, we learn unsupervised visual concepts from data using a direct search
approach instead of amortized inference. By visual concepts, we refer to a small dictionary
of (unknown) parameterized objects, that are acted upon by parameterized transformations
(e.g., translation, rotation, hue change), resulting in transformed instances of the visual con-
cepts called elements, which are rendered into a final image using a given image formation
model. Given access to a sufficiently large dataset, we demonstrate that interpretable visual
concepts naturally emerge as they allow efficient explanation of diverse datasets.

While the direct search problem for visual concepts is computationally ill-behaved, we
show that splitting the problem into subtasks not only results in computationally efficient
problems but also provides, as empirically observed, near optimal solutions. Particularly,
we alternate between solving for the dictionary of visual concepts and their parameterized
placement across any given image collection. We show that this approach has several ad-
vantages: using an optimization to perform the decomposition, instead of a single forward
pass in a network, (i) allows finding solutions that the network missed and improves decom-
position performance and (ii) often requires less training data than amortized inference and
produces (iii) fully interpretable decompositions where elements can be edited by the user.
For example, in Figure 1, our method extracts strokes from MNIST digits, 2D objects from
Clevr images, and 3D objects from a multi-view dataset of 3D scene renders.

We evaluate on multiple data modalities, report favorable results against different SOTA
methods on multiple existing datasets, and extract interpretable elements on datasets without
texture cues where deep learning methods like Slot Attention suffer. Additionally, we show
that our method improves generalization performance over supervised methods.

2 Related Work
Supervised methods. The well-studied problems of instance detection and semantic seg-
mentation are common examples of supervised decomposition approaches. Due to the large
body of literature, we only discuss some representative examples. Methods like Segnet [1]
and many others [4, 47] have tackled the problem of semantic segmentation, decomposing
an image into a set of non-overlapping masks, each labelled with a semantic category. In-
stance detection methods [11, 12, 36, 37] decompose an image into a set of bounding boxes,
where each box contains a semantic object, while others [5, 25, 29] go further by detect-
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ing relationship edges between objects, producing an entire scene graph. Mask-RCNN [17]
proposed an architecture to perform both instance detection and the segmentation using a
single network. Recently, there has been a rise of architectures that that explore set genera-
tion methods [3, 24, 27, 46] for decomposition. However, as the name indicates, supervised
methods require access to different volumes of annotated data for supervision, and often fail
to generalize to unseen data, beyond the scope of the distribution available for supervision.

Unsupervised methods. Prior to the rise of deep learning, methods [20] have been pro-
posed to model an input signal as a composition of epitomes, which contain information
about shape and appearance of objects in an input image, and further research also tried to
represent objects and scenes as hierarchical graphs composed of primitives and their rela-
tionships [6, 48, 49, 50].

Several methods [10, 13, 18, 23, 28, 38] try to perform decomposition as routing in
an embedding space. The decomposition performance of these methods is sensitive to the
input data distribution and may completely fail on some common cases, as we show in
Section 6. Recently, a method to decompose a 3D scene into multiple 3D objects was
proposed [42]. However, the method is domain specific to 3D data. In a related line of
research [2, 9, 14, 15], methods naturally encourage decomposing the input image into de-
sirable sets of objects during learning. However, these methods are currently out-performed
in most tasks by embeddings-space routing methods such as Slot Attention [28], and extend-
ing these methods to other domains is not straight forward. A differentiable decomposition
method was recently proposed [35], however, extensive information about the content of the
decomposed elements is needed as input.

Inspired by the use of compositionality in traditional computer graphics pipelines, re-
cent generative methods for 3D scenes encourage object-centric representations, using 3D
priors [8, 32, 33, 34, 43]. However, such ideas are yet to be extended beyond the generative
setting. Decomposition is also discussed in more general AI-focused contexts [16]. Most
recently, DTI-Sprites[31], Marionette [40] use a neural network to estimate a decomposition
into a set of learned sprites, however the reliance on differential sampling and soft occlusion
introduces local minima and undesirable artifacts.

3 Overview
Our goal is an unsupervised decomposition of an RGBA image I into a set of elements
E1, . . . ,En that approximate I when combined using a given image formation function and
where each element is an instance of a visual concept. A visual concept is an (unknown)
object or pattern that commonly occurs in a dataset of images I, such as Tetris blocks in
a dataset of Tetris scenes, characters in a dataset of text images, or individual strokes in a
dataset of hand-drawn characters. Figure 2 shows an overview of our approach.

An element Ei is a transformed instance of a visual concept. We use a parametric function
e to create each element Ei = eV(θi), where V is a sparse dictionary of visual concepts
extracted from an image dataset I, and θi = (τi,φi) is a set of per-element parameters: τi
is an index that describes which visual concept from V element Ei is an instance of, and φi
are domain-specific transformation parameters, such as translations, rotations and scaling.
The reconstructed image Ĩ = h(E1, . . . ,En) is computed from the elements with an image
formation function h, which we assume to be given and fixed. Details on the parametric
image and element representations are given in Section 4.
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Figure 2: Overview of our approach. Given an image dataset I = {I1, . . . , IN}, we alternate
between updating element parameters θ (such the choice of visual concept τ , its position,
scale, etc.) and the visual concepts V . We iterate over multiple target images Ik before evolv-
ing V by cloning concepts that are used often and have a large error. Another m iterations
specialize the cloned concepts to better reconstruct the target images. The result of this iter-
ative procedure is a library of visual concepts that can be used to efficiently decompose any
image that makes use of similar visual concepts.

We learn visual concepts V by optimizing both V and the element parameters θi to recon-
struct an image dataset I. The dictionary V is shared between all images in I, while θi has
different values for each element. While jointly optimizing V and θi jointly is hard, we find
that that optimizing one given the other is tractable. Thus, we alternate between optimizing
V and θi. At test time, we keep the visual concepts fixed and only optimize for the element
parameters that best reconstruct a given image. The optimization is described in Section 5.

In Sections 4 and 5, we first describe our approach with 2D alpha compositing as image
formation function, and 3D voxel compositing is described in the supplement.

4 Parametric Elements and Images Formation
We approximate an image I with a set of parametric elements Ĩ = h(E1, . . . ,En), where each
element is an instance of a visual concept.

Visual concepts. The dictionary of visual concepts V = (V1, . . . ,Vm) defines a list of visual
building blocks that can be transformed and arranged to reconstruct each image in a dataset
I. A visual concept Vj is defined as a small RGBA image patch of a user-specified size
The size of the patch determines the maximum size of a visual concept. Depending on the
application, we either set the number m of visual concepts manually, or learn the number
while optimizing the dictionary. Section 5 provides more details on the optimization.

Parametric elements. Each element Ei = eV(θi) is a transformed visual concept. The
parameters θi = (τi,φi) determine which visual concept is used with τi ∈ [1,m], and how
the visual concept is transformed with the parameters φi: Ei = eV(θi) := T (Vτi ,φi), where
T (V,φi) transforms a visual concept V according to the parameters φi and re-samples it on
the image pixel grid (samples that fall outside the area of the visual concept have zero alpha
and do not contribute to the final image). The type of transformations performed depend on
the application, and may include translations, rotations and scaling. See Section 5 for details.

Image formation function. The reconstructed image Ĩ is an alpha-composite of the indi-
vidual elements:

Ĩ = h(E1, . . . ,En) :=
n

∑
i=1

Ei

i−1

∏
j=1

(1−EA
j ) (1)
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Figure 3: Optimized element parameters after nrounds optimization rounds.

where A is the alpha channel and channel products are element-wise (with broadcasting
to avoid a cluttered notation). We set the maximum number of elements n manually (n is
between 4 and 45 in our experiments, depending on the dataset). Note that we can also use
fewer elements than the maximum since the transformation T can place elements outside the
image canvas, where they do not contribute to the image.

5 Optimizing Visual Concepts
We train our dictionary of visual concepts to reconstruct a large image dataset I as accurately
as possible:

argmin
V,Θ

E(V,Θ) :=
|I|

∑
k=1

∥Ik − Ĩk∥2
2 with Ĩk = h(eV(θ k

1 ), . . . ,eV(θ
k
n )), (2)

where E is the L2 reconstruction error, θ k
i denotes the parameters of element i in image k,

and Θ = {θ k
i } is the set of element parameters in all the images of I. Optimizing over V

and Θ jointly is infeasible since the search space is not well-behaved. It is high-dimensional,
and contains both local minima and discrete dimensions, such as those corresponding to the
visual concept selection parameters τi. However, since the element parameters θ k

i of different
images k appear in separate linear terms, they can be independently optimized given V . This
motivates a search strategy that iterates over images Ik, and alternates between updating the
visual concepts V and the element parameters θ k

i .

5.1 Updating Element Parameters
While the element parameters of different images can be optimized independently, the op-
timal parameters of different elements in the same image depend on each other due to the
alpha-composite. One possible approach to optimize all element parameters in an image
given the visual concepts V is to use differentiable compositing [35]. However, we show
that even a simpler greedy approach gives us good results. We initialize all elements to be
empty and optimize the parameters of one element at a time, starting at θ1. The optimum
of θ1 is likely to be the least dependent on the other elements, since it corresponds to the
top-most element that is not occluded by other elements. We perform nrounds rounds of this
per-element optimization (typically nrounds = 3 in our experiments). In Figure 3, we compare
nrounds = 1 versus nrounds = 3.

The parameters in a single element determine the choice of visual concept in an element
and its transformation. Gradient descent is not well suited for finding the element parameters,
due to discontinuous parameters and local minima, but the dimensionality of the parameters
is relatively small, between 2 and 4 in our applications. This allows us to perform a grid
search in parameter space (see the supplementary material for grid resolutions). From the
element parameters we typically use, the objective values are most sensitive to the translation
parameters. A small translation can misalign a visual concept with the target image and
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cause a large change in the objective, requiring us to use a relatively high grid resolution.
Fortunately, we can speed up the search over the translation parameters considerably by
approximating the original objective with a normalized correlation and formulating the grid
search over translations as a convolution, which can be performed efficiently with existing
libraries. Details on our convolution-based grid search are given in the supplement.

Element shuffling. We shuffle the order of elements to improve convergence and avoid
local minima encountered due to our greedy per-element optimization. After optimizing
all elements in an image, we move each element to the front position in turn, effectively
changing the occlusion order. After each swap, we check the objective score and keep the
swap only if it improves the objective.

5.2 Updating Visual Concepts
The dictionary of visual concepts V is shared across all images in the dataset I. A parametric
element Ei = T (Vτi ,φi) is differentiable w.r.t. the visual concept Vτi ∈ V , thus we can update
V using stochastic gradient descent. After updating all element parameters of a given image
I ∈ I, we jointly update the visual concepts used in all elements of the image by taking one
gradient descent step with the following objective: argminV ∥I − h(eV(θ1), . . . ,eV(θn))∥2

2,
while keeping the element parameters θi fixed. To restrict the value domain of visual con-
cepts Vj to the range [0,1], we avoid functions that have vanishing gradients and use an
approach inspired by periodic activation functions [39]: Vj = sin(30V ′

j) ∗ 0.5+ 0.5, and we
optimize over V ′

j .

Evolving visual concepts. In many practical applications, we may not know the optimal
number of visual concepts in advance. Choosing too many concepts may result in less se-
mantically meaningful concepts, while too few concepts prevent us from reconstructing all
images. We can learn the number of concepts along with the concepts using an evolution-
inspired strategy. We start with a small number of visual concepts, and every nev epochs, we
check how well each concept performs (nev is between 1 and 3 in our experiments, depend-
ing on dataset size). We replace concepts that incur a large reconstruction error and occur
frequently with two identical child concepts. In the next epoch, these twin concepts will be
used in different contexts, and will specialize to different patterns or objects in the images.
Concepts that occur too infrequently, are removed from our dictionary. This results in a tree
of visual concepts that is grown during optimization. The supplement describes thresholds
for removing and splitting concepts and an illustration of the visual concept tree.

Composite visual concepts. A visual concept may appear in several discrete variations in
the image dataset. For example, each Tetris block in the Tetris dataset may appear in one of
6 different hues. To avoid having to represent each combination of hue and block shape as
separate visual concept, we could add a hue parameter to our element parameters. However,
that would not give us explicit information about the discrete set of hues that appear in the
dataset. Instead, we can split our library of visual concepts into two parts: Vs captures the
discrete set of shapes in the dataset, and Vh captures the discrete set of hues as a dictionary
of 3-tuples. The visual concept selector τ = (τs,τh) in the element parameters is then a tuple
of indices, one index into the shapes and one into the hues, and the transformation function
T (V s

τs ,V h
τh ,φ) combines shape V s ∈Vs with hue V h ∈Vh through multiplication. When using
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Figure 4: Decomposition result on the Tetris dataset (left) and Clevr dataset (right), showing
composite concepts consisting of both learned shapes and learned hues. Since we do not
include mirroring or scaling in our image formation model, mirrored objects and objects at
different depths are learned as separate concepts.

these composite visual concepts, both shape and hue dictionaries are updated in the visual
concept update step.

6 Results and Discussion
We demonstrate our method’s performance on three tasks: (i) unsupervised object segmen-
tation, where our unsupervised decomposition is used to segment an image that has a known
ground truth segmentation, (ii) cross-dataset reconstruction, where we test the generalization
performance of our method by training our visual concepts on one dataset and using them
to decompose an image from a second dataset, and (iii) 3D scene reconstruction, where we
learn 3D concepts and reconstruct 3D scenes from multiple 2D views.

6.1 Object Segmentation
In this experiment, we measure the quality of our decompositions by comparing the segmen-
tation induced by a decomposition to a known ground truth.

Datasets We test on four decomposition datasets: Tetrominoes, Multi-dSprites [30], Multi-
dSprites adversarial, and Clevr6 [19]. Please refer to S.3 for more details on datasets, opti-
mization parameters and other hyperparameters.

Baselines We compare our results with the state-of-the-art in unsupervised decomposition:
Iodine [15], Slot Attention [28], DTI-Sprites [31] and Marionette [40], which use trained
neural networks to perform the decomposition. Note that these baselines do not create an
explicit dictionary of visual concepts except Marionette. While DTI-Sprites does create a
dictionary, but individual slots entangle multiple different concepts, and the trained network
is needed to disentangle them at inference time. Further, Iodine and Slot Attention do not
generate explicit element parameters.

Results For all the datasets, we start with 3 visual concepts and evolve more concepts
as needed. Table 1 shows quantitative comparisons, measuring the segementation perfor-
mance with the Adjusted Rand Index (ARI) [44]. Our method achieves the best perfor-
mance in the two variants of the M-dSprites dataset, with SlotAttention failing on the ad-
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Table 1: Segmentation performance. Decomposition accuracy measured by the ARI met-
ric. Second best values are underlined, while (∗) uses the same element transformations and
number of concepts as our method. See Section 6.1 for details.

Tetrominoes dSprites Color. dSprites Bin. dSprites Adv. CLEVR6

IODINE 99.2 ± 0.4 76.7 ± 5.6 64.8 ± 17.2 - 98.8 ± 0.0
Slot Attention 99.5 ± 0.2 91.3 ± 0.3 69.4 ± 0.9 12.7 ± 1.1 98.8 ± 0.3

DTI-Sprites 99.6 ± 0.2 92.5 ± 0.3 75.5∗± 0.4 75.3∗± 0.4 97.2 ± 0.2
Ours 99.5 ± 0.1 90.6± 0.8 85.1 ± 0.7 76.4 ± 2.4 64.6 ± 0.8

Table 2: Visual concept error. Average
L1 distances between each library con-
cept and the nearest learned concept.

dSprites Bin dSprites Adv

Slot Att. 0.0312 0.0497
DTI-Sprites 0.0133 0.0219

Ours 0.0033 0.0051

Table 3: Cross-dataset reconstruction.
MSE reconstruction loss on EMNIST let-
ters for methods trained on MNIST digits.

MNIST(Train) EMNIST(Test)

Slot Att. 0.0048 0.0560
DTI-Sprites 0.0065 0.0202

Ours(128) 0.0114 0.0169
Ours(512) 0.0090 0.0140

versarial version. In Tetrominoes, the performance of all methods is near optimal. In the
Clevr6 dataset, the lighting, reflections, and perspective projection effects violate our as-
sumptions about the image formation model, which we assume to be alpha-blending. Nev-
ertheless, we include Clevr6 to show that our method gracefully fails if our assumptions
about the image formation do not hold. Table S2 shows that the visual concepts learned
by our method are closer to the ground truth concepts than for existing methods, that is,
our method finds the dictionary of objects that scenes are composed of more accurately.

In
pu

t

Space Invaders Super Mario Bros I, Robot

O
ur

s
M

ar
io

ne
tte

Figure 5: Ours on MarioNette and recovered concepts.

Figures 4 and S7 show ex-
ample decompositions on each
dataset. We provide the full dic-
tionaries of visual concepts ex-
tracted from each dataset in the
supplemental. DTI-Sprites is most
related to our method. Table 1
shows our competitive segmenta-
tion performance, but Table S2 and Figure 7 reveal that the concepts it learns each may
entangle multiple ground truth visual concepts, especially when using lower concept num-
bers. When reconstructing a scene, their image formation model needs to disentangle these
concepts. Thus, it does often not correctly identify the concepts in a dataset.

In Fig 5 we should comparision between our method and Marionette, our method requires
less data to extract concepts, only 4 and 6 frames for Space Invaders and Super Mario Bros,
respectively, compared to several thousands of frames required by MarioNette.

6.2 Cross-dataset Reconstruction
To quantify generalization performance, we train our algorithm and the baselines on the
MNIST [26] dataset, which contains hand-written digits, and test their reconstruction per-
formance on EMNIST [7] dataset, which also contains hand-written letters. Table 3 shows a
quantitative comparison between Slot Attention, DTI-Sprites and two versions of our method
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Figure 7: Comparison between visual concepts learned by DTI-Sprites and our method
on the M-dSprites Bin. dataset with different dictionary sizes n. The heatmap shows pixel
intensities. DTI-sprites learns entangled concepts that correspond to multiple ground truths.

using the MSE reconstruction loss, with the visual dictionary size capped to 128 or 512. Fig-
ure 6 shows an example decomposition. Since we do not rely on learned priors in addition to
our dictionary, our inference pipeline shows significantly better generalization performance
than the baselines. Note that in this experiment, DTI-Sprites is allowed translation, rotation
and scaling of elements, while our method only uses translations.

Limitations. Our pipeline has two main limitations. First, the computational cost of the
element parameter search. We plan to optimize the search operation using techniques like
a coarse-to-fine search in future work. Second, we currently search for exact repetitions of
objects to learn our concepts. Accounting for deformations/variations by incorporating a
more general parametric deformation model, for example by using a neural network with the
help of differentiable rasterizers, will be a valuable next step towards a more general model.

7 Conclusion and Future Work
We presented a general method to learn visual concepts from data, both for images and
shapes, without explicit supervision or learned priors. Our main idea is posing the search
for visual concepts as a direct optimization, which can be solved efficiently when splitting
the task into alternating dictionary finding and parameter optimization steps. Using direct
optimization, instead of a network-based approach, improves the quality of the resulting
visual concepts and additionally reveals parameters such as hue, position, and scale that are
not available to most network-based approaches. In the future, we would like to extend
our approach to a fully generative model. One approach would be to learn a distribution
over the element parameters. When combined with the learned concepts, we could sample
the element parameter distributions to produce new images with the given image formation
function. This opens up new avenues for parametric generative models, blurring the line
between neuro-symbolic and image-based generative models. We believe that ultimately
the right direction for a decomposition is a hybrid between network-based and search-based
methods.
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