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Search for Concepts: Discovering Visual
Concepts Using Direct Optimization

BMVC 2022 Submission # 810

S.1 Convolution-based Grid Search
When optimizing the element parameters in a given image Ĩ, we maximize the normalized
cross-correlation [1] instead of minimizing the L2 distance:

argmax
θ1,...,θn

∑p(IĨ)p√
∑p I2

p

√
∑p Ĩ2

p

with Ĩ = h(eV(θ1), . . . ,eV(θn)), (S1)

where the products are element-wise and p is a two-dimensional pixel index. We can then
formulate a grid search over translation parameters as a convolution. In the single-element
case, Ĩ = E1, and we can rewrite Eq. S1 as:

argmax
θ1

(I ⊛ Ê1)t1√
∑p I2

p

√
(1⊛ Ê2

1 )t1

, (S2)

where Ê is the element E with translation parameters t ∈ θ zeroed out, so the transformed
visual concept is at the origin and acts as a convolution kernel, and 1 is an image of all-ones.
The result of the convolution is an image where each pixel corresponds to the correlation at
one 2D translation t.

In the general case with multiple elements, we optimize the parameters of one element
at a time. At each element, we need to account for occlusions from previous elements when
performing the convolution. Re-writing the alpha-composite defined in Eq. 1 to isolate the
contribution of a single element Ei we get:

Ĩ = Ĩi−1
1 +EiOi−1

1 +(1−EA
i )O

i−1
1 Ĩn

i+1 (S3)

with Ĩb
a :=

b

∑
i=a

EiOi−1
a and O j

a :=
j

∏
i=a

(1−EA
i ).

Intuitively, Ĩb
a is the partial composite of the elements a through b, without taking into ac-

count other elements, and O j
a is the occlusion effect of elements a through j on the following

elements. Only the second and third terms depend on Li, where the second term is the oc-
cluded contribution of Li to the image and the third term describes the occlusion caused by

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Li on the following elements. Substituting into Eq. S1, and using convolutions for searching
over translations we arrive at:

argmax
θi

∑p(IC1)p +(IC2 ⊛ Êi + IC3 ⊛ (1− ÊA
i ))ti√

∑p I2
p

√
∑p(C2

1)p +(Ni)ti

(S4)

with Ni = C2
2 ⊛ Ê2

i +C2
3 ⊛ (1− ÊA

i )
2

+2C1C2 ⊛ Êi +2C1C3 ⊛ (1− ÊA
i )

+2C2C3 ⊛ Êi(1− ÊA
i )

and C1 = Ĩi−1
1 C2 = Oi−1

1 C3 = Oi−1
1 Ĩn

i+1,

which we solve as efficient update step for element parameters. Section S.2 provides the
derivation.

S.2 Layer Parameter Objective

We derive the objective for the layer parameter optimization with alpha compositing and
convolutions defined in Eq. 7 of the main paper. The objective is obtained in two steps:
(i) we substitute the alpha composite defined in Eq. 6 into layer parameter objective in Eq.
4, and (ii) we search over position parameters using convolutions, analogous to Eq. 5. For
clarity, we first define:

C1 = Ĩi−1
1 C2 = Oi−1

1 C3 = Oi−1
1 Ĩn

i+1,

so that Eq. 6 becomes:

Ĩ =C1 +EiC2 +(1−EA
i )C3. (S5)

Substituting Eq. S5 into Eq. 4 and restricting the optimization over the parameters θi of layer
Ei:

argmax
θi

∑p(IC1)p +∑p(IC2Ei)p +∑p(IC3(1−EA
i ))p√

∑p I2
p

√
∑p(C2

1)p +N ′
i

(S6)

with N ′
i = ∑p(C2

2E2
i )p

+∑p(C2
3(1−EA

i )
2)p

+2∑p(C1C2Ei)p

+2∑p(C1C3(1−EA
i ))p

+2∑p(C2C3Ei(1−EA
i ))p.
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Finally, exchanging any term of the form ∑p(CEi)p with a convolution (C⊛ Êi)ti using as
kernel the layer with with zeroed translation parameters Êi, we arrive at Eq. 7 of the paper:

argmax
θi

∑p(IC1)p +(IC2 ⊛ Êi + IC3 ⊛ (1− ÊA
i ))ti√

∑p I2
p

√
∑p(C2

1)p +(Ni)ti

with Ni = C2
2 ⊛ Ê2

i

+∑C2
3 −2C2

3 ⊛ ÊA
i +C2

3 ⊛ (ÊA
i )

2

+2C1C2 ⊛ Êi

+2∑C1C3 −C1C3 ⊛ ÊA
i

+2C2C3 ⊛ Êi −2C2C3 ⊛ ÊiÊA
i .

S.3 Datasets and Hyperparameters details

The Tetrominoes dataset contains 60k images with 3 randomly rotated and positioned Tetris
blocks. The Multi-dSprites dataset consists of 60k images, each showing 2-3 shapes picked
from a dictionary and placed at random locations, possibly with occlusions. We use a dis-
cretized variant of the color version and the binarized version of this dataset. We discretize
the color version to eight colors, so that the colors can be discovered as composite concepts.
In addition, we create a variant of this dataset that we name Multi-dSprites adversarial,
where shapes can only appear in three discrete locations on the canvas. This intuitively sim-
ple dataset highlights shortcomings in existing methods. The Clevr6 dataset consists of 35k
rendered 3D scenes with each scene is an arrangement of up to six geometric primitives with
various colors and materials. Also since MarioNette data is not available, we obtain compa-
rable data through screen captures of Space Invaders, Super Mario Bros, and I, Robot (in the
latter we use only lower-case letters).

Optimization details. We learn visual concepts using AdaDelta [4] with a learning-rate of
1.0 and a batch size of 8 on a single GPU. We have tested different optimizers but found that
our pipeline was robust to the choice of optimizer. A more detailed comparison of optimizers
is in the supplemental. We do not use any learning rate schedulers or warm-up techniques.

In Table S1 we list the hyperparameters we used for each experiment.

S.4 Thresholds for Splitting and Removing Concepts

The threshold for removing a concept Vj is N j < 0.25 n|I|
|V| , where N j is the number of in-

stances of concept v j, and n is the number of elements per image. The threshold for splitting
a concept is N j > 0.25 n|I|

|V| , in addition to a threshold on the reconstruction error E j < 0.95.
The reconstruction error E j of a single visual concept Vj over the whole dataset is isolated
as:

E j(V,Θ) := ∑
{i,k|τk

i = j}

∑p(Mk
i IĨMk

i )p√
∑p(Mk

i I)2
p

√
∑p(Mk

i Ĩ)2
p

with Mk
i = (EA

i )
k(Oi−1

1 )k. (S7)
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Table S1: Hyperparameters. In this table present the hyperparameters used of different
experiments that are used to generate the results presented in the paper. Translation values
are greater than the input image size if we allow partial placement of a concept. The first and
second columns show the initial number of concepts and the max number of concepts . The
rotation column indicates the number of values uniformly sampled in [0,2π].

s
Init Max Translation Rotation nColors nlayers Concept Size

Tetris 1 10 35x35 4 6 3 19
Multi dSprites bin 4 22 64x64 40 1 3 33

Multi dSprites Adv 1 3 64x64 40 1 3 33
Clevr6 8 32 64x64 1 8 6 31

MNIST(128) 8 128 28x28 1 1 4 13
MNIST(512) 8 512 28x28 1 1 4 13

MNIST Sum(128) 8 128 41x41 1 1 4 13
MNIST Sum(512) 8 512 41x41 1 1 4 13

GTSRB 6 64 28x28 1 1 6 31
Xmas Pattern 2 2 85x85 1 1 45 21

Ep
oc

hs

0

1

2

4

5

...

3

Figure S1: Visual concept evolution for the MNIST dataset. Note how the concepts evolve
over optimization epochs by specializing to subtle stroke variations.

The sum is over all elements Ek
i in all images Ik that use the visual concept Vj and Mk

i is a
mask that zeros out parts of the image that do not have contributions from element Ek

i .

S.5 Concept Evolution Graph

As described in the main paper, the number of concepts is determined by a concept evolution
approach where concepts can be split or removed. This results in a tree of visual concepts
that is grown during optimization. An illustration of such a tree is shown in Figure S1.

S.6 Learning Visual Concepts in 3D Scenes

We use our framework to learn 3D visual concepts V from multi-view renders of 3D scenes.
In this setting, our visual concepts are 3D voxel patches instead of 2D image patches, where
each voxel describes a density value. The transformation function T translates these patches
and samples them at the global voxel grid of the 3D scene to obtain 3D elements Ei: Ei =
T (Vτi , ti), where ti is a 3D translation and Vτi , a visual concept, is a 3D voxel patch containing
density values. For the image formation function h, we use the orthographic projection to
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Figure S2: Given multi-view 2D renders of 3D scenes (left), our method can learn 3D visual
concepts that can be used to reconstruct the 3D scenes.

Input Recons Layers

Figure S3: Example decomposition of an MNIST digit using additive compositing.

accumulate the voxel densities along the viewing direction d, giving us the image Ĩ:

Ĩ = h(E1, . . . ,En|d) := ∑
l

(
S2

jkl

l−1

∏
m=1

(1−S jkm)
)
, with S = min(1,Rd

(
∑

i
Ei
)
), (S8)

where S is the scene voxel grid, computed as a sum over all element voxel grids, rotated and
re-sampled by Rd to align the last axis (indexed by l) with the viewing direction d. We clamp
densities in S to have a maximum of value 1. The orthographic projection accumulates voxel
densities along the viewing direction and the product attenuates voxel contributions by the
occlusion effect of voxels closer to the viewer, indicated by smaller index l. We optimize
element parameters ti and visual concepts V to maximize the normalized cross-correlation
between all reconstructed renders Ĩ and all ground truth renders I of a 3D scene dataset, as
described in the previous sections, but without using convolutions to speed up the search for
element parameters. The element parameters ti of a scene are optimized using all views of
that scene. In our experiments, we use 20 views: back/front, left/right, top, and 3 additional
rotations of these views by π/8 radians about the top/bottom axis.

Evaluation: We create a synthetic dataset of 16 3D scenes by randomly selecting 3 shapes
from a dictionary of 4 ground truth shapes and placing them at random positions on a ground
plane. We render 20 different views of each scene to form the input dataset, and use the
image formation described in Section S.6 to learn 3D concepts. Reconstruction results and a
comparison of the learned concepts to the ground truth is provided in Figure S2.

S.7 Additive Compositing
As mentioned in the main paper, we can use our approach with different compositing func-
tions. Here, we present details and experiments with additive compositing instead of the
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Figure S4: Graph illustrating visual concept evolution for the MNIST dataset trained using

additive compositing. (Please use digital zoom for details.) Note how the method learns
smaller concepts compared to alpha compositing, as shown in Figure 4 of the main paper.

Table S2: Additive compositing results. MSE reconstruction loss of EMNIST letters using
additive compositing. The visual concepts are trained on the MNIST digits dataset with
an additive compositing function. We show results for two dictionary sizes, m = 128 and
m = 512.

MNIST(Train) EMNIST(Test)

Ours Additive (128) 0.0163 0.0215
Ours Additive (512) 0.0137 0.0186

alpha-compositing used for the 2D results in the main paper and the other sections of the
supplementary. For additive compositing, we replace Eq. 6 with a sum over layers:

Ĩ =C+Ei (S9)

with C = ∑
j ̸=i

E j.

The layer parameter optimization objective defined by Eq. 7 for alpha composting then
becomes the following for additive compositing:

argmax
θi

∑p(IC)p +(I ⊛ Êi)ti√
∑p I2

p

√
∑p(C2)p +(1⊛ Ê2

i )ti +(2C⊛ Êi)ti

. (S10)

Quantiative results measuring the MSE reconstruction loss for the cross-dataset general-
ization experiment are shown in Table S2 for two dictionary sizes. Note that reconstruction
errors are slightly higher with additive compositing when compared to the corresponding
results with alpha-compositing in Table 3 of the main paper. Figures S5 and S3 show the
learned concepts and a decomposition example, respectively. Figure S4 show the evolution
graph of the visual concepts.

S.8 Additional Results
We also submit an additional set of uncurated results along with the supplementary (see
the contents of the zip file). We included the first b images of the respective datasets, with
b being the batch-size. For each image, we show the reconstruction and the decomposed
layers. Note that these results are not post-processed, so the layer decomposition may also
contain layers that are completely occluded by other layers.
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MNIST-Sum(128)

Figure S5: Visual concepts learned from the MNIST dataset using additive compositing.

PCA

Dict.
Learn.

...Input

Ours
Figure S6: We show the performance of classical methods like PCA or dictionary learning
to obtain dominant modes of an image dataset. Note that extracted modes are not very
interpretable in terms of compositionality. In contrast, our method uses a search-and-learn
strategy to extract a dictionary of interpretable visual concepts, in this case the underlying
strokes. Checkered patterns denote transparent pixels.

S.9 Comparison with Traditional methods

We compare our approach to traditional unsupervised decomposition methods like PCA or
dictionary learning in Figure S6.
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Figure S7: Comparison of decomposition result to Slot Attention on the M-dSprites Bin. and
M-dSprites Adv. datasets. Slot Attention is not regularized by a global dictionary, resulting
in incorrect decompositions. Ours are more interpretable.
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S.10 Ablation of Optimizers
We demonstrate the robustness of our approach to the choice of optimizer and learning rates.
In Figure S8, we show the MSE training loss curve for different optimizers and learning rates
on the pattern images shared along with this supplementary material. We show SGD, Adam
[2], Adadelta [4], and RMSprop optimizers with learning rates in [0.001,1]. Our pipeline
converges for all the optimizers with appropriate learning rate but lower learning rates take
longer to converge.

Iteration

M
SE

Figure S8: MSE training loss curves for various optimizers and learning rates. Note that all
optimizers converge with the right learning rate.

S.11 Ablation of the Visual Concept Evolution
In Fig S9, we demonstrate the necessity for the visual concept evolution in our pipeline.
Without evolution, a single optimized concept may average multiple similar ground truth
concepts. Using evolution, we allow this average concept to split into multiple more spe-
cialized child-concepts, that each approximate fewer ground truth concepts. After a few
evolution steps, each leaf concept eventually represents a single ground truth concept.

w
 C

lo
ni

ng
w

o 
C

lo
ni

ng

Figure S9: Effect of cloning. Without cloning (left-top) our algorithm produces an av-
erage visual concept as a proxy to collectively represent similar shapes. However, with
cloning (left-bottom) our algorithm can specialize to pickup subtle differences among the
visual concepts, producing individualized concepts. On the right, we show the confusion
matrix to show how similar the ground truth visual concepts are, with 1 denoting perfect
similarity.
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dSprites-bin

Tetrominoes dSprites-Adv

Clevr6

Figure S10: All the learned concepts on Tetrominoes, Multi-dSprites bin, Multi-dSprites
Adv and Clevr6 datasets.

S.12 ARI calculation

The Adjusted Rand Index (ARI) measures the similarity between two clusterings. We use
it to compare the decomposition found by our method to the ground truth decomposition.
In images without occlusions or with visual concepts that have the same constant color, any
layer ordering results in the same reconstructed image, thus the layer order is ambiguous.
In cases with ambiguous ordering, we select the layer ordering that gives the highest ARI
score.

S.13 Full visual concepts

In Figures S10 and S11, we show all visual concepts learned by our method from each 2D
dataset used in the main paper (all visual concepts of the 3D dataset are shown in Figure 10
of the main paper). Additionally, we show visual concepts obtained from the GTSRB traffic
sign dataset [3] in Figure S11, bottom.

S.14 dSprites Adv. Dataset Details

To create the dSprites Adversarial dataset, we place two or three visual concepts in each
image. Each concept is placed at one of three pre-defined locations on the canvas (with-
out overlaps). All concepts have the same scale and a random rotation. Figure S12 shows
samples of the dataset.
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MNIST(128)

GTSRB

Figure S11: All the learned concepts on MNIST and GTSRB datasets.
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Figure S12: Random samples from the dSprites Adversarial Dataset.
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S.15 Background Handling
When using alpha-compositing, we treat the background as a special layer Ln that is locked
to the back of the layer stack (i.e. it is occluded by all other layers when using alpha-
compositing) and does not have layer parameters. The background is represented by a spe-
cial visual concept Vm that is only used by the background layer and is initialized with a
constant value of 0.5 in all pixels. During optimization of a given image Ĩ, we optimize the
background visual concept before the other concepts or layers, to make sure the other layers
don’t represent parts of the background.

S.16 3D Scene Reconstruction segmentation
We also measure the quality of our decompositions by comparing the 2D projections of the
segmented 3D scene to a known ground truth. We achieve an ARI of 99.3% on this task.

S.17 Video
In the supplementary material, we include a video that visualizes the optimization process of
our method, showing the optimized visual concepts in each iteration and the layer segmen-
tation of the reconstructed image. For clarity, we demonstrate the optimization on a dataset
consisting of a single image with multiple repeating visual concepts.

S.18 Code
We include a development version of our code in the supplemental that can be used to repro-
duce the results.
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