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Figure 1: S-Flow is capable of applying semantic (top right), style (bottom right), and joint
semantic and style edits (/eft) for facial images while preserving both identity and realism.

Abstract

The high-quality images yielded by generative adversarial networks (GANs) have
motivated investigations into their application for image editing. However, GANs are
often limited in the control they provide for performing specific edits. One of the prin-
cipal challenges is the entangled latent space of GANs, which is not directly suitable for
performing independent and detailed edits. Recent editing methods allow for either con-
trolled style edits or controlled semantic edits. In addition, methods that use semantic
masks to edit images have difficulty preserving the identity and are unable to perform
controlled style edits. We propose a method to disentangle a GAN’s latent space into se-
mantic and style spaces, enabling controlled semantic and style edits for face images in-
dependently within the same framework. To achieve this, we design an encoder-decoder
based network architecture (S2-Flow), which incorporates two proposed inductive biases.
We show the suitability of S2-Flow quantitatively and qualitatively by performing various
semantic and style edits. Code and data are available at https://github.com/visinf/s2-flow.

1 Introduction

Powerful deep generative models of images, such as generative adversarial networks (GANs)
[13] or variational autoencoders (VAEs) [26], have seen numerous applications across com-
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puter vision [3, 5, 35, 38, 55]. With the advent of models based on StyleGAN [22], there has
been a plethora of work focusing on controllable manipulation of the latent code for the task
of image editing [9, 14, 45]. However, modifying the latent code in a controllable way, such
that it leads to the desired edits in the image space, continues to be challenging.

Broadly speaking, we can divide image editing with GANS into two subgroups: (i) Un-
conditional GAN-based methods [14, 51], which find editing vectors using unsupervised
learning methods like PCA [14] or activation maps [51]. They do not take user inputs
into account and have a limited set of editing directions. (ii) Conditional GAN-based meth-
ods, on the other hand, are more cognizant to the user input. These methods generate the
edited image conditioned on user inputs, such as semantic masks [29, 36, 57], attributes [15,
18], or text [30, 37, 52]. Though these methods support more varied editing operations,
they lack controllability, e. g., attributed-based methods provide no controllability on how a
smile (wide, grinning, efc.) might look or if the person is wearing round or square glasses
(Fig. 2(a)). Semantic-based methods, in contrast, have limited control on style editing, re-
quiring the use of a target transfer image (Fig. 2(b)). In general, performing controlled and
disentangled edits in the latent space is a very challenging task.

In this paper, we propose, to the best of our knowledge, the first approach that allows
to perform controlled semantic editing (i. e. changes possible with a semantic mask, e. g.,
changing smile, changing hair style, etc.) and style editing (i. e. changes not possible with a
semantic mask, e. g., age, hair color, efc.) while preserving the identity of facial images. We
achieve this by disentangling the semantic and style spaces. This disentanglement is achieved
by introducing two inductive biases into the network: (1) Style consistency — editing an
image in the semantic domain should have no effect on the style properties of the image.
(2) Semantic consistency — edits made in the semantic domain should be reflected in the
semantics of the generated image. Our design of the model architecture and a novel loss
formulation allow the model to incorporate the aforementioned inductive biases, helping it
to make independent edits to the style and semantics of a given image. Specifically, our
contributions are: (i) We propose a method to disentangle the latent space of a pretrained
generator network into style and semantic spaces for the task of facial editing. Thereby, we
are among the first to utilize normalizing flows for disentangling a GAN’s latent space. (ii)
Our method solves the problem of applying fine-grained edits to both the style and semantic
spaces. (iii) We show both qualitatively and quantitatively that our model outperforms well
established methods [29, 36] on two semantic editing benchmarks. (iv) We show our model’s
ability to generate high-quality identity-preserving edits for various editing tasks, see Fig. 1.

2 Related Work

Since the seminal work of Goodfellow ef al. [13], there has been enormous progress in
the area of generative modelling, from generating small-scale low-resolution images [41] to
generating high-fidelity, realistic looking images [21, 22]. In this work we tackle the problem
of disentangling the latent space of a pretrained GAN, focusing on facial image editing.

Disentanglement. Unsupervised disentanglement has been a long standing goal for com-
puter vision for its usefulness in inverting the generative process. InfoGAN [8] and Be-
taVAE [17] tackle this problem from an information theoretic perspective. Despite their
pioneering efforts, these models work only in low-resolution low-complexity dataset set-
tings and are difficult to train. Many works [19, 32] disentangle the style and semantic codes
of an image by swapping the codes with another image for the the task of image-to-image


Citation
Citation
{Abdal, Zhu, Mitra, and Wonka} 2021{}

Citation
Citation
{Abdal, Zhu, Mitra, and Wonka} 2022

Citation
Citation
{Mu, Deprotect unhbox voidb@x protect penalty @M  {}Mello, Yu, Vasconcelos, Wang, Kautz, and Liu} 2022

Citation
Citation
{Peebles, Zhu, Zhang, Torralba, Efros, and Shechtman} 2022

Citation
Citation
{Zhang, Ling, Gao, Yin, Lafleche, Barriuso, Torralba, and Fidler} 2021

Citation
Citation
{Karras, Laine, and Aila} 2019

Citation
Citation
{Collins, Bala, Price, and S{Ã¼}sstrunk} 2020

Citation
Citation
{H{ä}rk{ö}nen, Hertzmann, Lehtinen, and Paris} 2020

Citation
Citation
{Shen, Yang, Tang, and Zhou} 2022

Citation
Citation
{H{ä}rk{ö}nen, Hertzmann, Lehtinen, and Paris} 2020

Citation
Citation
{Wu, Lischinski, and Shechtman} 2021

Citation
Citation
{H{ä}rk{ö}nen, Hertzmann, Lehtinen, and Paris} 2020

Citation
Citation
{Wu, Lischinski, and Shechtman} 2021

Citation
Citation
{Lee, Liu, Wu, and Luo} 2020

Citation
Citation
{Park, Liu, Wang, and Zhu} 2019

Citation
Citation
{Zhu, Abdal, Qin, and Wonka} 2020{}

Citation
Citation
{He, Zuo, Kan, Shan, and Chen} 2019

Citation
Citation
{Hou, Zhang, Liang, Shen, Lai, and Wan} 2022

Citation
Citation
{Li, Qi, Lukasiewicz, and Torr} 2020

Citation
Citation
{Patashnik, Wu, Shechtman, Cohen-Or, and Lischinski} 2021

Citation
Citation
{Xia, Yang, Xue, and Wu} 2021

Citation
Citation
{Lee, Liu, Wu, and Luo} 2020

Citation
Citation
{Park, Liu, Wang, and Zhu} 2019

Citation
Citation
{Goodfellow, Pouget{-}Abadie, Mirza, Xu, Warde{-}Farley, Ozair, Courville, and Bengio} 2014

Citation
Citation
{Radford, Metz, and Chintala} 2016

Citation
Citation
{Karras, Aila, Laine, and Lehtinen} 2018

Citation
Citation
{Karras, Laine, and Aila} 2019

Citation
Citation
{Chen, Duan, Houthooft, Schulman, Sutskever, and Abbeel} 2016

Citation
Citation
{Higgins, Matthey, Pal, Burgess, Glorot, Botvinick, Mohamed, and Lerchner} 2017

Citation
Citation
{Huang, Liu, Belongie, and Kautz} 2018

Citation
Citation
{Liu, Huang, Mallya, Karras, Aila, Lehtinen, and Kautz} 2019


SINGH ET AL.: S2-FLOW: JOINT SEMANTIC AND STYLE EDITING OF FACIAL IMAGES 3

translation. Instead of swapping style and semantic codes, we obtain a disentanglement be-
tween these spaces by incorporating transformation-based inductive biases like semantic and
style consistency. Recently, [28, 53] proposed disentangled variants of StyleGAN [22] by
using two separate (style and semantic) spaces and modelling the interactions between them
using attention modules. In contrast, our work deals with disentangling the latent space of
a pretrained GAN and, thus, requires no additional training of the GAN module, which is
difficult and computationally expensive.

Editing in the latent space of
GANSs. There have been a plethora

Attribute  Semantic Uncondit. ~ Text Ours

of interesting works for editing ) I _

using the latent space of GANS. S8 Z|E g z |3 BRI z Z| .
Attribute-based methods rely on 52731E25¢|225 2|2 % i
learning interpretable edit directions : el kil bl satil W
in the latent space of a pretrained St Edis b b 5 o |v v v |0 0 0 o|b b o] ¥
GAN using a neural network trained ~ Mult Bdits /Model v/ > vilvi v 0= x =\ v|

either on attributes [4, 24, 45, 58], 7~ Fully, x: None, o: Limited (requires style image), — N/A

paired synthetic data [49], or pseudo Table 1: Comparison of existing editing methods.
labels [20]. Some attribute-based  Our work sits between attribute and semantic meth-
methods like AttGAN [15] train a ods, allowing for both fully controlled style and se-
generative model based on an at- mantic edits.

tribute classification loss.  Text-

based methods use natural language cues for editing the image; Patashnik et al. [37] apply
a CLIP-based [42] loss for learning editing directions. [30, 52] learn a GAN-based model
conditioned on text. All the above methods provide a high degree of control for style edits
but severely lack controllability and interpretability in terms of editing semantics, e. g., sun-
glasses vs. reading glasses, small smile vs. big smile, ezc. (Fig. 2(a)). A fastidious user can
give very detailed textual cues to obtain the desired effect, but this soon becomes untenable
when finer control of semantics is required, e. g., when describing the exact shape of glasses.
On the other hand, methods like [9, 14, 44, 50, 51] use unsupervised approaches for finding
editing directions. These methods find a set of editing directions and require copious manual
effort to semantically identify them. Semantic-based editing methods [29, 36, 57] provide
control over semantic editing but these models severely lack in the ability to carry out style
edits. For carrying out targeted style edits, the user has to search through 1000s of images to
find a suitable target (Fig. 2(b)). An overview of such work is shown in Tab. 1.
Simultaneous edits of semantic and style. Our work is able to provide controlled semantic
and style editing on facial images by finding disentangled dual spaces. Unlike [23, 28, 53],
we work on a pretrained GAN’s latent space instead of training a new GAN model from
scratch, which requires a large training set and extensive parameter tuning. Our method of
disentanglement uses only 10k GAN-generated images. Moreover, it lies at the intersection
of style and semantic-based methods, using semantic conditioning for enabling semantic
edits and learning walks in the style space for applying highly controllable style edits.

3 Joint Semantic and Style Editing

Given only a pretrained GAN model and its generated images as input, our goal is to devise
a method for image editing that enables semantic and style edits within the same framework
without mutual interference between these edits. We argue that this requires disentangling
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Input Edited Mask Styleflow Ours Input Target MaskGAN Ours

(a) Controlled semantic editing (b) Controlled style editing

Figure 2: (a) Controlled semantic editing. Attribute-based methods, e. g. StyleFlow [4], do
not allow for user control over how a targeted semantic edit should look like. (b) Controlled
style editing. Semantic methods, e. g. MaskGAN [29], allow for limited controllability for
style editing. As semantic-based methods rely on target images for style editing, erroneous
attributes like lip makeup/skin color are also transferred when the user only aimed to change
the the age (top) or hair color (bottom). In contrast, S>-Flow does not require target images
and uses interpolation in style space, enabling it to apply targeted style edits.

the image representation into two parts, one responsible for the semantics of the image and
one for capturing its style. This disentanglement allows us, on one hand, to perform edits
in multiple spaces, namely in the semantic and style space, while on the other giving more
control on the generated result by ensuring the integrity of the non-edited characteristics.

The key insight of our method is that an image can be decomposed into its semantic
and the style codes and edits made in one domain (semantic or style) should not affect the
other. We design our image generation and editing framework as an encoder-decoder model
to disentangle the aforementioned two spaces using continuous normalizing flow (CNF) [7]
blocks. We chose CNFs based on two motivations: (i) Firstly, a CNF network is reversible
by design and hence has cycle consistency, which is a crucial property to successfully disen-
tangle semantics and style during training. (ii) Secondly, CNFs are much easier to train than
other encoder-decoder models like VAEs [17, 26] or Transformers [48]. Before describing
our architecture in Sec. 3.2, we summarize its building blocks.

3.1 Building blocks

Latent space. The latent space of deep generative models serves as a good proxy for the
real image manifold. We use the latent space of StyleGAN2 [22] for our model. Given
a latent sample, drawn from A (0,1), StyleGAN?2 transforms it into an intermediate latent
code using a series of nonlinear mappings. Abdal et al. [1] further extend this space by
concatenating 18 different latent codes, which they term the YW space. We train our network
directly in this W™ space, since [2, 4] show that this space is better suited for editing.

Normalizing flows. A normalizing flow model [11] transforms a simple initial known dis-
tribution to a more complex one using a series of composable transformations f7, ..., f;. The
function F = f; o - -- of;, must be invertible and both F and F~! should be differentiable. The
function F relates the marginal densities of the two distributions using the change of vari-
ables formula, which involves computing the determinant of the Jacobian. Calculating the
determinant of the Jacobian can be an expensive operation, requiring special neural network
architectures for fast computation. Chen et al. [7] introduced a continuous version to alle-
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(a) Training (b) Editing a real image

Figure 3: Framework overview. (a) Training. (1) The encoder (dashed line) takes as input
the latent code w € W and its corresponding inferred semantic mask m = S(G(w)). (2) The
encoder model disentangles the style code wgy from w given wygn= E(m). (3) The decoder
(solid line) combines wyy and the edited semantic code Wsym= E(/17) to yield the edited latent
code w € W+ (output), which is fed to the generator network to yield the edited image /. (b)
Editing. Given a real image, we first obtain its latent code w using an inverter network, e. g.,
ede [47]. Using this w and the given user-edited mask, S2-Flow returns a new latent code W,
which is used to generate the edited image G(W).

viate this problem, paving the way for using arbitrary neural networks for modelling these
transformations. We decided to use CNFs [7] for our implementation as this allows us to
use an unrestricted architecture when modelling the transformation function 7, making the
transformation function more flexible and expressive.

3.2  S%-Flow model

Overview. The goal of S2-Flow is to disentangle the latent code w into its constituent latent
codes, namely, semantic wyy, and style wg,. We use a conditional variant of CNF [7], where
the forward and reverse flow' are used to model the decoder and encoder, respectively. In
contrast to earlier works [4, 24], where the latent space of the CNF model is highly entangled,
our formulation disentangles style and semantics using our novel inductive biases (Sec. 3.3).
The process of encoding-decoding is visualized in Fig. 3(a) and formally described below.
Encoder. The reverse flow of our model is the encoder network and works as follows:
Given a latent code w, we generate its corresponding image / and infer its semantic mask m
using pretrained StyleGAN2 [22] and DeepLabV3 [6] networks, respectively. The semantic
mask is then passed through a convolutional neural network called Embedder to yield the
semantic code wgy,. The concatenation of w and wgy, is fed as input to each CNF block of
our model. Given this semantic code wgy,, the encoder learns to disentangle the style code
Wsty from the latent code w.

Decoder. Our forward flow learns to combine the latent style (wgy) and semantic (Wgp)
codes to reconstruct the original latent code w without any loss of information due to the
reversibility of the CNF. During training (Fig. 3(a)), we simulate the editing behaviour by
modifying the input mask m to 7z, which results in a new Wy, leading to an edited latent
code # and its corresponding edited image /=G(#). Editing during training is performed by

ICNFs define forward flow as transforming a normal distribution to a more complex one. The reverse flow trans-
forms a complex distribution to the normal distribution.
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swapping the mask between two samples based on our defined criterion, see supplemental
for more details.

3.3 Objective

To disentangle style from semantics for the W space during training, we add two inductive
biases to our loss function: (i) Style consistency ensures that editing the semantic mask of an
image should have minimal impact on the style attributes. Hence at training time, the decoder
should output a latent code W that is similar in style to the original w. In other words, S?-Flow
learns to extract the same style code wyy for two images that only differ semantically. (ii)
Semantic consistency addresses the fact that changes made in the semantic domain should
be reflected in the generated image as well. Our overall loss function is defined as

L= £nll<W) + Alﬁsm(ﬁ’las(G(W») + AZACimg([»i) + Af3ACpercept(I7I,> . (])

The negative log-likelihood loss, Ly, encourages the model to learn the conditional data
distribution of images given semantic masks. To ensure semantic consistency, we use the
Lsm loss, which is equal to the cross-entropy loss between the edited mask 7 and the inferred
mask of the generated image S(G(W)). To ensure style consistency between the edited image
[ and the original image I, we use two loss functions, Limg and Lpercept- Limg Measures the
L, distance in the image space. We use a masked version of the L, distance, restricting the
computation of the loss only to the edited regions. The perceptual loss, Lpercept, computes the
L, distance between [ and I using the intermediate features from a pretrained VGG network
[46]. The detailed formulas can be found in the supplemental.

3.4 [Editing and generation

After training, S>-Flow can be used for both conditional image generation and editing.
Conditional generation. Given a semantic mask m and a style code wgy from the style
space of S2-Flow, the decoder generates w and consequently a new image /=G(w) consistent
with the semantic mask m.

Editing. Given an edited mask for an image I (real or fake) and the latent code’ w, the
encoder disentangles w into wgy and wgy,. For semantic editing, the decoder uses the edited
mask and the original style code wyy to create the edited latent code in WT. Fig. 3(b)
shows an illustrative example of editing a real image. Style editing is performed by linearly
interpolating between the source style code wgy and the target style code in the style latent
space. The target style code equals the mean style code of all positive samples for the given
target attribute. Semantic and style edits can also be applied simultaneously, see Fig. 1.

4 Experiments

To evaluate the disentangled editing ability of our approach, we perform various facial edit-
ing experiments by applying style and semantic edits separately and in combination. We
compare the results visually and quantitatively to related editing methods [4, 29, 36].

Dataset and training. The main goal of our work is to disentangle the latent space of
a pretrained GAN by training our model on GAN-generated images. In particular, we use

2For a real image, we use e4e [47] to obtain the corresponding latent code.
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Perceptual Quality Semantic Identity Perceptual Quality Semantic Identity
Method FID| LPIPS| mloUT mAcct IDJ]  Method FID| LPIPS| mloU?T mAcct IDJ

MaskGAN EZ‘)] 40.58 0.27 0.52 0.88 0.53  MaskGAN 529] 40.79 0.29 0.58 0.82 0.50
SPADE [36 60.43 0.28 0.81 0.97 0.46  SPADE [36 61.02 0.30 0.89 0.92 0.46

S2-Flow (ours) 26.65  0.14 0.77 0.95 0.15  S*-Flow (ours) 2675  0.12 0.78 0.94 0.10
Abs. improv.  +13.93 +0.13  -0.04  -0.02  +0.31 Abs.improv.  +14.04 +0.17 -0.11  +0.02 +0.36

Table 2: Results on the smile edit benchmark Table 3: Results on our general editing
from [29] benchmark

Input  EditedMask MaskGAN SPADE  StyleFlow Ours Input
¥

EditedMask MaskGAN SPADE  StyleFlow Ours

(a) Glasses editing (b) Smile editing

Figure 4: Comparison on semantic editing. S>-Flow successfully supports semantic edits
while preserving the identity and yields higher quality images compared to existing semantic
editing methods (MaskGAN [29], SPADE [36]). Also, S?-Flow allows for more controlled
user edits compared to existing attribute-based editing method (StyleFlow [4]).

the dataset introduced by StyleFlow [4], which consists of 10k latent codes from a Style-
GAN2 [22] model trained on FFHQ [22]. For training we use the Adam [25] optimizer
with a constant learning rate of 3 - 10~*. Further, we rely on a curriculum learning approach
where the loss function and the difficulty of the performed edits in the segmentation mask
are gradually increased. We refer the reader to the supplementary for more training details.
Metrics. For measuring the structural similarity between the edited semantic mask and the
semantic mask of the generated image, we use the mean IoU (mloU) and the mean pixel-wise
accuracy (mAcc). To compare the quality of generated images between different models, we
use FID [16] and LPIPS [54]. We use the ArcFace [10] network to measure the identity
preservation score (ID) when editing an image.

GAN inversion. For editing real images, our model makes use of GAN inversion methods
[1, 2,43, 47, 56]; specifically, we use [47] to obtain the latent code of a real image.

4.1 Quantitative experiments

S2-Flow is a semantic-based method, which additionally allows for style editing, see Tab. 1.
Thus, we compare our method against other semantic editing methods, namely MaskGAN
[29] and SPADE [36], for the task of semantic editing. Both these models perform highly
controllable edits conditioned on semantic masks. We do not compare our method against
EditGAN [31] as it requires additional test-time optimization for each image for each edit-
ing direction; therefore, the same editing vector is not applicable to multiple images. To
quantitatively measure the editing capability, we use the smile edit benchmark introduced by
MaskGAN [29]. For fair comparison, we train SPADE [36] also on the StyleFlow [4] dataset
using the official repository. For MaskGAN [29], we use the pretrained weights from the net-
work trained on the CelebA-HQ dataset [21] provided by the authors. Both the CelebA-HQ
and the StyleFlow dataset contain high-quality, diverse face images; hence, the test time dis-
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(a) Fixed style (b) Fixed semantics

Figure 5: Disentanglement of style and semantics. (a) Semantic diversity. S>-Flow is able
to generate a face with varying smiles, hairstyles, and glasses while preserving the style and
identity. (b) Style diversity. S>-Flow generates a diverse set of styles while only minimally
deviating from the input semantic mask.

tribution shift should be minimal. We report the results in Tab. 2. Our model outperforms
both semantic editing methods in terms of ID, LPIPS, and FID while being minimally worse
in terms of mloU and mAcc scores. We also evaluate on a more complex editing scenario
in which we make diverse edits to the semantic masks. For each test image we randomly
perform one of the following edits: (/) swap mouth, (2) swap nose, (3) swap eyebrows, (4)
remove glasses, (5) swap/add glasses, and (6) swap hair. We refer to this as the general
semantic editing benchmark; the results are shown in Tab. 3. S>-Flow again outperforms
all other baselines in terms of ID, LPIPS, and FID. Our model’s slightly inferior mIoU and
mAcc scores can be attributed to its behaviour of making more realistic and conservative
edits to preserve the identity rather than only optimizing for the mloU score (Fig. 4).

4.2 Qualitative results

Disentanglement of style and semantics. We show qualitatively that our model learns
to disentangle style and semantics when generating or editing an image by keeping one
dimension fixed while varying the other. Given a semantic mask, we randomly sample 4
different style codes from the style latent space of S>-Flow and generate their corresponding
images (Fig. 5(b)), which are diverse in style but consistent with the input semantic mask.
Similarly, given an image, we obtain its style code and apply different edits to its semantic
mask to generate images with the same style but different semantics (Fig. 5(a)). Both results
in Fig. 5 show that our model has learned to disentangle the semantic and style codes for
an image. Though we achieve a high degree of disentanglement, some factors still remain
entangled between the semantic and style spaces, such as long hair and gender; this can be
explained as we train with only GAN-generated images. Existing GAN-based approaches
are known to not cover all modes of the underlying data distribution [12, 33, 39]. Perfect
disentanglement, even with real images, remains challenging due to the inherent bias of the
datasets [27] and the sample complexity [34].

Semantic editing. We evaluate the semantic editing capability of our model qualitatively
against MaskGAN [29] and SPADE [36]. We also compare our method against StyleFlow [4]
to show that attribute-based methods are unable to apply controlled semantic editing. We do
not compare our model against unconditional and text-based models since the former lack
interactive editing and the latter require very targeted text for highly controlled semantic edit-
ing. Fig. 4 clearly shows that our model is much better in terms of visual quality and identity
preservation compared to previous semantic editing methods (MaskGAN [29], SPADE [36]).


Citation
Citation
{Goodfellow} 2016

Citation
Citation
{Liu, Wang, Bau, Zhu, and Torralba} 2020

Citation
Citation
{Pei, Xu, Xiang, and Meng} 2021

Citation
Citation
{Kortylewski, Egger, Schneider, Gerig, Morel-Forster, and Vetter} 2019

Citation
Citation
{Locatello etprotect unhbox voidb@x protect penalty @M  {}al.} 2019

Citation
Citation
{Lee, Liu, Wu, and Luo} 2020

Citation
Citation
{Park, Liu, Wang, and Zhu} 2019

Citation
Citation
{Abdal, Zhu, Mitra, and Wonka} 2021{}

Citation
Citation
{Lee, Liu, Wu, and Luo} 2020

Citation
Citation
{Park, Liu, Wang, and Zhu} 2019


SINGH ET AL.: S2-FLOW: JOINT SEMANTIC AND STYLE EDITING OF FACIAL IMAGES 9

(a) Joint style and semantic editing (b) Style editing

Figure 6: (a) Semantic and style editing. S?>-Flow enables diverse semantic and style edits
like adding a smile (sem) & changing hair color (sty), adding glasses (sem) & changing
gender (sty), etc. (b) Style editing. S*>-Flow is able to modify style attributes like hair color,
age, and gender while preserving the identity and being faithful to the input semantics.

Fig. 4 also shows that attribute-based methods (StyleFlow [4]) allow for some semantic edits
like smile and glasses, but without controllability over their shape.

Style editing. Fig. 6(b) shows the results of S>-Flow for different style edits by interpolating
in the style latent space. Our model can apply fine-grained style edits like changing hair
color and more general edits like changing gender and age while staying truthful to the
semantic mask. Since our style space itself is not disentangled by design, multiple attributes
can change during interpolation. Doing similar edits with other semantic methods via style
transfer requires manually searching for a target image differing in only one attribute.
Semantic and style editing. We highlight the flexibility of our model in performing edits
in multiple spaces, i. e. style and semantic space. Fig. 6(a) shows that even when we edit
multiple attributes in the semantic space and then perform an edit in the style space, our
model is still able to preserve the identity and has excellent visual fidelity. Our work is
one of the first to allow for joint editing of style and semantics with a high level of control,
compared to attribute-based methods that only allow for controlled style edits (Fig. 2(a)) and
semantic-based methods that only for controlled semantic edits (Fig. 2(b)).

Sequential semantic editing. We next show the capability of S>-Flow on a more extended
task that involves using edited latent vectors from the previous edit to make the next edit.
This task is considerably harder since the resultant edited latent vector may not be amenable
for further editing [47]. Fig. 8(c) shows sequential semantic edits like adding glasses, chang-
ing the hairstyle, removing glasses, and editing a smile. The results clearly show that $2-
Flow produces latent codes, which can be edited further. The identity and realism of the
input image are preserved even in the case of long-range sequential edits.

Diverse semantic edits. Fig. 7 shows the diverse semantic editing capabilities of S2-Flow
for tasks like face frontalization, gaze change, efc. Even for the difficult case of randomly
swapping the masks with another image, which can lead to multiple semantic changes at
once, S>-Flow preserves the identity of the input while being faithful to the edited mask.
Real image editing. Finally, we show that even though our model is trained on generated
images, it can edit real images in both semantic (Fig. 8(a)) and style spaces (Fig. 8(b)). We
use the ede [47] model to embed the real images into the latent space of StyleGAN2 before
editing the images using their corresponding latent vector.

Limitations. S2-Flow is able to disentangle the style and semantics of a given image only to
a certain degree. This can mainly be attributed to the fact that present GAN-based methods
do not cover all the modes of the underlying data distribution [12, 33, 39]. Even when
trained with real images, perfect disentanglement would require an exponential number of
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Input Edited Input Output Input Edited Input Output Input Edited Input Output Input Edited Input Output Input Edited Input Output
Mask  Mask Mask Mask Img  Img Mask Mask Img Img Mask Mask Img Img Mask Mask Img Img

Gaze Headgear Random Swap Eyebrows Face Front.

Figure 7: Diverse semantic editing. S>-Flow is capable of a wide variety of semantic edits
like changing gaze, changing eyebrows, adding headgear, face frontalization, and random
swapping of semantic masks.

(a) Semantic editing on real images  (b) Style editing on real images (c) Sequential semantic editing

Figure 8: (a) Semantic editing on real images. S-Flow is able to apply semantic edits like
changing hairstyle, adding smile, and adding glasses on real images. (b) Style editing on
real images. Our model allows for applying fine style edits like hair color change as well
as coarse edits like changing age on real images. (c) Sequential semantic editing. S>-Flow
is able to perform sequential editing. It outputs latent editing codes, which are amenable for
further edits, and the edited images are both identity preserving and realistic.

samples in the number of factors of variation [34]. Also, our model sometimes changes the
background while performing style editing, which is mainly due to our style space itself
not being disentangled. A simple solution is to use a post-processing optimization step like
foreground-background separation or Poisson blending [40]. An exciting future direction
would be to disentangle the style space itself. This would further increase controllability.
Moreover, our model only allows for orthogonal changes in the semantic and style attributes.
Conflicting semantic and style changes like adding a smile on the mask and then interpolating
towards the sad attribute would preserve the semantic mask, only allowing for changes like
squinting of eyes, which are orthogonal to semantic changes. How to better handle these
conflicting cases remains an open question.

5 Conclusions

We propose S2-Flow, a method to disentangle the latent space of a pretrained generative
model to enable facial editing in multiple spaces, namely semantic and style. Our novel
model design and inductive biases (semantic & style consistency) help us to achieve this
disentanglement. We demonstrate visually and quantitatively that our model outperforms
existing semantic-based editing methods while also adding controlled style editing capabil-
ities to these models. Further, we illustrate the advantage of semantic editing compared to
attribute-based editing.
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