

Efficient Feature Extraction for High-resolution Video Frame Interpolation

hessian.Al

Moritz Nottebaum¹

Stefan Roth^{1,2} Simone Schaub-Meyer^{1,2}

Motivation

Goal: Computationally efficient method for high-resolution video frame interpolation

State-of-the-art Models

 High memory demands for 4K High model complexity

Our Approach

- Efficient feature extraction

Lightweight overall framework

GPU Memory (GB)

Quantitative Results

	Pretrained flow	# Param. (Mill.)	Memory (for 4K)	Training dataset	Xiph-4K (PSNR)	X-Test (PSNR)	$\frac{\text{Inter4K-S}}{(\text{PSNR})}$	Inter4K-L (PSNR)	$\begin{array}{c} \text{Inference} \\ \text{(in s/f)} \end{array}$
M2M-PWC [1]	✓	7.6	$10 \mathrm{GB}$	Vimeo90K	34.88	30.81	29.22	24.87	0.21
$\operatorname{RIFE}_m[2]$	×	9.8	$\underline{6.8}$ GB	Vimeo90K	34.80	26.80	28.37	24.40	0.40
XVFI [3]	×	5.5	>12 GB	X-Train	34.04	30.34	28.82	24.62	—
Ours	×	0.9	4.6 GB	X-Train	34.16	30.45	29.29	25.16	0.51

Ablation

	# Param. (in Mill.)	Memory (for 4K)	X-Test	Inter4K-S
Ours (full)	0.9	$4.6 \mathrm{GB}$	30.45	29.29
w/o finetuning projection vectors	0.9	$4.6 \mathrm{GB}$	29.46	28.34
w/o backward flow $(F_{t\to 0} \& F_{t\to 1})$	0.9	$4.6 \mathrm{GB}$	30.13	28.81
with synthesis	2.6	9.5GB	30.59	29.12

References & Disclosure of Funding

[1] Niklaus and Liu., Softmax splatting for video frame interpolation. In CVPR, 2020.

[2] Park et al., Asymmetric bilateral motion estimation for video frame interpolation. In CVPR, 2021. [3] Hu et al., Many-to-many splatting for efficient video frame interpolation. In CVPR, 2022. [4] Huang et al., Real-time intermediate flow estimation for video frame interpolation. In ECCV, 2022. [5] Sim et al., XVFI: eXtreme video frame interpolation. In ICCV, 2021.

[6] Stergiou and Poppe., Adapool: Exponential adaptive pooling for information-retaining downsampling. arXiv:2111.00772 [cs.CV], 2021.

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 866008). The project has also been supported in part by the State of Hesse through the cluster project "The Third Wave of Artificial Intelligence (3AI)".

European Research Council Established by the European Commission

Conclusion

- We propose the fLDR module, an efficient way to extract lowdimensional features for motion estimation.
- Our framework is overall lightweight in terms of memory and trainable parameters.
- We curate a new challenging 4K testset for frame interpolation.
- We achieve state-of-the-art accuracy on X-Test, Inter4K-S and Inter4K-L among approaches without pretrained flow.

erc