
NOTTEBAUM ET AL.: FEATURE EXTRACTION FOR VIDEO FRAME INTERPOLATION 1

Efficient Feature Extraction for
High-resolution Video Frame Interpolation

Supplemental Material

Moritz Nottebaum1

moritz.nottebaum@stud.tu-darmstadt.de

Stefan Roth1,2

stefan.roth@visinf.tu-darmstadt.de

Simone Schaub-Meyer1,2

simone.schaub@visinf.tu-darmstadt.de

1 Department of Computer Science
TU Darmstadt

2 hessian.AI

A Overview
This appendix provides additional details related to training and the architectural setup for
reproducibility purposes, which were omitted in the main paper due to space limitations. We
further report evaluations with additional metrics and visualizations of the computed flow.
The supplemental video1 contains additional, temporal visual results and comparisons.

B Training Details
We give here the full formulas for the used loss functions. The total loss Ltotal in Eq. (6)
consists of

Lrecon =
S

∑
s=0

∥Îs
t − Is

t ∥1 (7)

Lsmooth = ∑
(i, j)∈{(0,1),(1,0)}

exp
(
−e2

∑
c
(∇xIic)

2
)T

· |∇xF0
i→ j| (8)

Lwarp =
(
∥−→ω (I0

0 ,F0→1)− I0
1∥1 +∥−→ω (I0

1 ,F1→0)− I0
0∥1

)
, (9)

where s, c, e, x, λ·, and −→
ω (·, ·) define the scale, the channel index, an edge weighting factor, a

spatial coordinate, the weighting factors, and the forward warping function, respectively. The
values for the hyperparameters are given in Tab. 4.

As mentioned in the occlusion estimation in Sec. 4, we apply the softmax function along
the last dimension of the weighting map, creating a probability distribution for every output
pixel. Using the softmax function allows for temperature scaling [8], for which we divide the

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1Available at https://github.com/visinf/fldr-vfi.

Citation
Citation
{Guo, Pleiss, Sun, and Weinberger} 2017

 https://github.com/visinf/fldr-vfi


2 NOTTEBAUM ET AL.: FEATURE EXTRACTION FOR VIDEO FRAME INTERPOLATION

Strain e λsmooth λwarp

3 150 0.125 0.5

Table 4: Overview of the used hyperparameters.

Layer name Input # Channels In/Out Reuse weights

conv2d_1 fLDRs 96/96 False
conv2d_2 conv2d_1 96/96 False
conv2d_3 conv2d_2 + fLDRs 96/96 False
conv2d_4 conv2d_3 96/96 False
conv2d_5 conv2d_4 96/96 False
conv2d_6 conv2d_5 96/48 False
conv2d_7 conv2d_6 48/4 False

Table 5: Layers of the flow estimation network at the coarsest scale s = S. The column “Reuse
weights” indicates if the parameters of a layer are reused from another layer. The output of
the last layer is the bidirectional flow [FS

0→1,F
S
1→0].

estimated occlusion map M by the scalar temperature parameter T before taking the softmax.
This allows to soften the distribution or make it more peaked, depending on whether T its
greater or smaller than 1. After training the full pipeline with Ltotal and T = 1, we additionally
end-to-end optimize for T while keeping all other parameters fixed. We finetune T with a
learning rate of 10−3 using the mean-squared-error of the image reconstruction loss for 10
epochs.

C Network Architecture

Tabs. 5 and 6 list the details of our flow estimation network for the coarsest scale and all higher
levels, respectively. After each convolutional layer, ReLU nonlinearities [45] are applied
except for conv2d_7 in Tab. 5, and conv2d_3i and conv2d_8 in Tab. 6. The kernel size of
each convolutional layer is 3×3. Layer conv2d_1 and conv2d_2 in Tabs. 5 and 6 share their
parameters, as well as conv2d_30 and conv2d_31 in Tab. 6. fLDRs = [fLDRs

0, fLDRs
1] is the

result of our finetuned linear dimensionality reduction (fLDR) of image I0 and I1 at scale s,
i. e. [Ĩs

0, Ĩ
s
1].

Tab. 6 shows the architecture of our flow estimation network for s < S, with feat0 and
feat1 defined as follows:

feat0 :
[
(fLDRs

0 + conv2d_20),
−→
ω (fLDRs

0 + conv2d_20,up(Fs+1
0→1))

]
(10)

feat1 :
[
(fLDRs

1 + conv2d_21),
−→
ω (fLDRs

1 + conv2d_21,up(Fs+1
1→0))

]
, (11)

where Fs+1
0→1 and Fs+1

1→0 are the estimated, bidirectional flows from the previous, coarser scale
and conv2d_20 as well as conv2d_21 are the outputs of the convolutional layer conv2d_2,
split along the channel dimension, such that they represent the features of input image I0 and
I1, respectively. The flow has been upscaled (up(·)) bilinearly.

The configuration of the occlusion estimation network is listed in Tab. 7. After each
convolutional layer, ReLU nonlinearities [45] are applied except for layer dec_3.

Citation
Citation
{Nair and Hinton} 2010

Citation
Citation
{Nair and Hinton} 2010



NOTTEBAUM ET AL.: FEATURE EXTRACTION FOR VIDEO FRAME INTERPOLATION 3

Layer name Input # Channels In/Out Reuse weights

conv2d_1 fLDRs 96/96 conv2d_1 (Tab. 5)
conv2d_2 conv2d_1 96/96 conv2d_2 (Tab. 5)
conv2d_30 feat0 96/48 False
conv2d_31 feat1 96/48 conv2d_30
conv2d_4 [conv2d_30,conv2d_31,up(Fs+1)] 100/96 False
conv2d_5 conv2d_4 96/96 False
conv2d_6 conv2d_5 96/48 False
conv2d_7 conv2d_6 48/48 False
conv2d_8 conv2d_7 48/4 False

Table 6: Layers of the flow estimation network at all scales except the coarsest, i. e. s < S.
The column “Reuse weights” indicates if the parameters of a layer are reused from another
layer. The output of the last layer is added to the upsampled flow Fs+1 of the previous scale,
which results in the final bidirectional flow Fs = [Fs

0→1,F
s
1→0] of scale s.

Layer name Filter Size # Input Filters # Output Filters

enc_0 4×4 26 16
enc_1 4×4 16 32
enc_2 4×4 32 64
dec_0 3×3 64 64
dec_1 3×3 64+32 32
dec_2 3×3 32+16 16
dec_3 3×3 16 6

Table 7: Layers of the occlusion estimation network. The output of enc_2 is additionally
fed into dec_1. The output of enc_1 is additionally fed into dec_2. The outputs of dec_0,
dec_1, dec_2, and dec_3 are upscaled with nearest neighbor upsampling and a scale factor of
2 before feeding them into the respective next layer.

D Quantitative Results

In Tab. 8 we provide, in addition to the PSNR values in Tab. 2, a quantitative analysis with
SSIM [39], LPIPS [44], and inference time, where possible. We can only measure the
inference time for models where we have the code and which are running on our Nvidia
3080Ti (12GB) GPU. Unfortunately, XVFI with S = 5 scales run out of memory on our GPU
with 12 GB and the error metric computation has been computed on CPU. We, therefore,
provide the inference time only for S = 3 (‡). We did not optimize our method for inference
time. Nevertheless, we obtain inference times comparable to most of the other methods.
M2M-PWC downscales the input image first by a factor of 1/16, leading to faster inference.

E Optical Flow Visualizations

In Fig. 6 we show some visualizations of our predicted flow in comparison to the com-
putationally more expensive pretrained PWC-Net [32] often used in frame interpolation
methods [9, 21]. However, the flow shown here, is computed with the original PWC-Net
without yet finetuning for the task of frame interpolation as this depends on the used frame
interpolation method.

Citation
Citation
{Wang, Bovik, Sheikh, and Simoncelli} 2004

Citation
Citation
{Zhang, Isola, Efros, Shechtman, and Wang} 2018

Citation
Citation
{Sun, Yang, Liu, and Kautz} 2018

Citation
Citation
{Hu, Niklaus, Sclaroff, and Saenko} 2022

Citation
Citation
{Niklaus and Liu} 2020



4 NOTTEBAUM ET AL.: FEATURE EXTRACTION FOR VIDEO FRAME INTERPOLATION

Xiph-4K X-Test Inter4K-S Inter4K-L Inference (in s/f)

M2M-PWC [9] 0.949/0.219 0.914/0.086 0.942/0.076 0.883/0.145 0.21

RIFE⋄
m [10] 0.910/0.171 0.793/0.227 0.894/0.117 0.826/0.196 0.40

RIFEm [10] 0.904/0.228 0.751/0.260 0.893/0.123 0.829/0.197 0.40
XVFI⋄ [28] 0.910/0.175 0.874/0.085 0.915/0.085 0.850/0.145 0.66‡/ N/A
Ours 0.913/0.144 0.871/0.099 0.917/0.084 0.904/0.139 0.50‡/0.51

Table 8: Extension of Tab. 2 with (SSIM [39]/LPIPS [44]) and inference time in s for a 4K
image (2160×4096) on a Nvidia 3080Ti GPU.

(a) Overlaid inputs (b) F0→1 [32] (c) F1→0 [32] (d) F0→1 (Ours) (e) F1→0 (Ours)

Figure 6: Flow visualization. Comparison of computed flow between ours (smaller network,
flow for frame interpolation) and the pretrained PWC-Net [32].

References
[45] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted Boltzmann

machines. In Proceedings of the 27th International Conference on Machine Learning,
2010.

Citation
Citation
{Hu, Niklaus, Sclaroff, and Saenko} 2022

Citation
Citation
{Huang, Zhang, Heng, Shi, and Zhou} 2022

Citation
Citation
{Huang, Zhang, Heng, Shi, and Zhou} 2022

Citation
Citation
{Sim, Oh, and Kim} 2021

Citation
Citation
{Wang, Bovik, Sheikh, and Simoncelli} 2004

Citation
Citation
{Zhang, Isola, Efros, Shechtman, and Wang} 2018

Citation
Citation
{Sun, Yang, Liu, and Kautz} 2018

Citation
Citation
{Sun, Yang, Liu, and Kautz} 2018

Citation
Citation
{Sun, Yang, Liu, and Kautz} 2018


