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Figure 1: We present a new monocular 3D human performance capture approach, HiFECap,
which for the first time jointly captures the body pose, hand gestures, facial expressions,
and high-frequency non-rigid deformations in 3D solely using RGB images as input. The
deformations recovered by our method are a clear step towards higher-fidelity cloth capture.

Abstract

Monocular 3D human performance capture is indispensable for many applications
in computer graphics and vision for enabling immersive experiences. However, detailed
capture of humans requires tracking of multiple aspects, including the skeletal pose, the
dynamic surface, which includes clothing, hand gestures as well as facial expressions.
No existing monocular method allows joint tracking of all these components. To this
end, we propose HiFECap, a new neural human performance capture approach, which
simultaneously captures human pose, clothing, facial expression, and hands just from a
single RGB video. We demonstrate that our proposed network architecture, the carefully
designed training strategy, and the tight integration of parametric face and hand models
to a template mesh enable the capture of all these individual aspects. Importantly, our
method also captures high-frequency details, such as deforming wrinkles on the clothes,
better than the previous works. Furthermore, we show that HiFECap outperforms the
state-of-the-art human performance capture approaches qualitatively and quantitatively
while for the first time capturing all aspects of the human.

1 Introduction
The goal of 3D human performance capture is the space-time coherent tracking of the entire
human surface from different sensor types; this is a long-standing and challenging computer
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vision problem. Such densely tracked characters can be used in film, game, and mixed reality
applications to create immersive and photo-real virtual doubles of real humans.

Previous multi-view-based approaches [11, 12, 13, 14, 19, 22, 48, 54, 58, 59, 79, 84] can
capture high-quality surface details. However, they rely on impractical and expensive multi-
camera capture setups. To commoditize performance capture, ideally, just a single RGB cam-
era should be necessary while still allowing users to track both the body pose and non-rigid
deformations of skin and clothing. Prior monocular approaches were able to recover the pose
and shape of a naked human body model [38, 39, 56], hands [10, 17, 23, 52, 81, 92, 93, 96],
facial expression [41, 71, 72, 73, 76], or all of them [36, 57, 86, 97]; recovering cloth defor-
mations remains out of their reach. Some previous work on monocular 3D human and clothes
reconstruction uses volumetric [21, 94] or continuous implicit representations [64]. How-
ever, these approaches do not track space-time coherent surfaces and lack surface correspon-
dences over time. On the other hand, template-based monocular methods [24, 25, 46, 89]
can track low-frequency surface details coherently over time, but cannot capture facial ex-
pressions and hand gestures. Joint capture of all aspects remains poorly studied.

To address these limitations, we present HiFECap, a novel monocular learning-based 3D
human performance capture approach that jointly captures the skeletal pose, dense surface
deformations, hand gestures, and facial identity and expressions; see Fig. 1 for an overview.
First, convolutional neural networks predict the skeletal pose and the coarse surface defor-
mations from the segmented monocular image of the actor. High-frequency surface details
are recovered by a deformation network as dense vertex displacements. These intermediate
outputs are then combined in a differentiable character representation, which can be super-
vised with multi-view images and 3D point clouds during training. We further replace the
hand and face regions of the original template with parametric hand and face models using
our proposed registration strategy, and drive them by predicting the parameters from images.

In summary, our technical contributions are: 1) HiFECap, i.e., the first monocular 3D
human performance capture approach enabling joint tracking of body pose, the non-rigidly
deforming surface, hand gestures, and facial expressions. 2) A visibility- and rigidity-aware
vertex displacement network to enable the capture of high-frequency geometric details of
the dynamic human surface. 3) A multi-stage training process for surface recovery and a
face and hand model integration. Our experiments show that HiFECap applies to different
clothing types and outperforms the existing state of the art in terms of recovered details.

2 Related Work
Multi-view Performance Capture. Many approaches require multi-view imagery [18, 50,
67, 80, 82]. Prior works reconstruct surface deformations based on person-specific template
meshes [14, 16, 19] or a volumetric representation [2, 31]. For high-quality reconstructions,
some methods rely on segmented and high-resolution human body scans [11, 13, 48, 83] or
articulated skeletons to separate piece-wise rigid and non-rigid deformations [22, 48, 79, 84].
Parametric models offer another possibility to 3D human motion capture [4, 27, 30, 37, 42,
49, 55, 58]. Approaches relying on them often ignore clothing by treating it as noise [6], or
estimate only naked body shape [5, 32, 90, 91]. Some techniques track facial expressions
[36] and hands [36, 63] in addition to the proxy human body shape.

To capture the human with clothing, some methods deform a 3D model to fit a scan [91]
or multi-view images [61], use separate meshes for body shape and clothing [59] or deploy
multi-view CNNs [33]. However, all these approaches require a multi-view setup at infer-
ence time, which makes them impractical for most users. In contrast, our method only lever-

Citation
Citation
{Bray, Kohli, and Torr} 2006

Citation
Citation
{Brox, Rosenhahn, Cremers, and Seidel} 2006

Citation
Citation
{Brox, Rosenhahn, Gall, and Cremers} 2009

Citation
Citation
{Cagniart, Boyer, and Ilic} 2010

Citation
Citation
{Deprotect unhbox voidb@x protect penalty @M  {}Aguiar, Stoll, Theobalt, Ahmed, Seidel, and Thrun} 2008

Citation
Citation
{Gall, Stoll, Deprotect unhbox voidb@x protect penalty @M  {}Aguiar, Theobalt, Rosenhahn, and Seidel} 2009

Citation
Citation
{Liu, Stoll, Gall, Seidel, and Theobalt} 2011

Citation
Citation
{Mustafa, Kim, Guillemaut, and Hilton} 2015

Citation
Citation
{Pons-Moll, Romero, Mahmood, and Black} 2015

Citation
Citation
{Pons-Moll, Pujades, Hu, and Black} 2017

Citation
Citation
{Vlasic, Baran, Matusik, and Popovi{¢}} 2008

Citation
Citation
{Wu, Stoll, Valgaerts, and Theobalt} 2013

Citation
Citation
{Kanazawa, Black, Jacobs, and Malik} 2018

Citation
Citation
{Kanazawa, Zhang, Felsen, and Malik} 2019

Citation
Citation
{Pavlakos, Zhu, Zhou, and Daniilidis} 2018

Citation
Citation
{Boukhayma, Bem, and Torr} 2019

Citation
Citation
{Chen, Liu, Ma, Chang, Wang, Chen, Guo, Wan, and Zheng} 2021

Citation
Citation
{Ge, Ren, Li, Xue, Wang, Cai, and Yuan} 2019

Citation
Citation
{Mueller, Bernard, Sotnychenko, Mehta, Sridhar, Casas, and Theobalt} 2018

Citation
Citation
{Wang, Mueller, Bernard, Sorli, Sotnychenko, Qian, Otaduy, Casas, and Theobalt} 2020

Citation
Citation
{Zhang, Li, Mo, Zhang, and Zheng} 2019

Citation
Citation
{Zhang, Huang, Tan, Xu, Yang, Peng, Wang, and Liu} 2021

Citation
Citation
{Zhou, Habermann, Xu, Habibie, Theobalt, and Xu} 2020

Citation
Citation
{Kim, Garrido, Tewari, Xu, Thies, Nie{T1ss }ner, P{é}rez, Richardt, Zoll{ö}fer, and Theobalt} 2018

Citation
Citation
{Tewari, Zoll{ö}fer, Kim, Garrido, Bernard, Perez, and Christian} 2017

Citation
Citation
{Tewari, Zollh{ö}fer, Garrido, Bernard, Kim, P{é}rez, and Theobalt} 2018{}

Citation
Citation
{Tewari, Zollh{ö}fer, Garrido, Bernard, Kim, P{é}rez, and Theobalt} 2018{}

Citation
Citation
{Tu, Zhao, Jiang, Luo, Xie, Zhao, He, Ma, and Feng} 2019

Citation
Citation
{Joo, Simon, and Sheikh} 2018

Citation
Citation
{Pavlakos, Choutas, Ghorbani, Bolkart, Osman, Tzionas, and Black} 2019

Citation
Citation
{Xiang, Joo, and Sheikh} 2019

Citation
Citation
{Zhou, Habermann, Habibie, Tewari, Theobalt, and Xu} 2021

Citation
Citation
{Gabeur, Franco, Martin, Schmid, and Rogez} 2019

Citation
Citation
{Zheng, Yu, Wei, Dai, and Liu} 2019

Citation
Citation
{Saito, Huang, Natsume, Morishima, Kanazawa, and Li} 2019

Citation
Citation
{Habermann, Xu, Zollhöfer, Pons-Moll, and Theobalt} 2019

Citation
Citation
{Habermann, Xu, Zollhoefer, Pons-Moll, and Theobalt} 2020

Citation
Citation
{Li, Habermann, Thomaszewski, Coros, Beeler, and Theobalt} 2021

Citation
Citation
{Xu, Chatterjee, Zollhöfer, Rhodin, Mehta, Seidel, and Theobalt} 2018

Citation
Citation
{Collet, Chuang, Sweeney, Gillett, Evseev, Calabrese, Hoppe, Kirk, and Sullivan} 2015

Citation
Citation
{Matusik, Buehler, Raskar, Gortler, and McMillan} 2000

Citation
Citation
{Starck and Hilton} 2007

Citation
Citation
{Vlasic, Peers, Baran, Debevec, Popovi{¢}, Rusinkiewicz, and Matusik} 2009

Citation
Citation
{Waschb{ü}sch, W{ü}rmlin, Cotting, Sadlo, and Gross} 2005

Citation
Citation
{Cagniart, Boyer, and Ilic} 2010

Citation
Citation
{Carranza, Theobalt, Magnor, and Seidel} 2003

Citation
Citation
{Deprotect unhbox voidb@x protect penalty @M  {}Aguiar, Stoll, Theobalt, Ahmed, Seidel, and Thrun} 2008

Citation
Citation
{Allain, Franco, and Boyer} 2015

Citation
Citation
{Huang, Allain, Franco, Navab, Ilic, and Boyer} 2016

Citation
Citation
{Bray, Kohli, and Torr} 2006

Citation
Citation
{Brox, Rosenhahn, Gall, and Cremers} 2009

Citation
Citation
{Liu, Stoll, Gall, Seidel, and Theobalt} 2011

Citation
Citation
{Wu, Varanasi, and Theobalt} 2012

Citation
Citation
{Gall, Stoll, Deprotect unhbox voidb@x protect penalty @M  {}Aguiar, Theobalt, Rosenhahn, and Seidel} 2009

Citation
Citation
{Liu, Stoll, Gall, Seidel, and Theobalt} 2011

Citation
Citation
{Vlasic, Baran, Matusik, and Popovi{¢}} 2008

Citation
Citation
{Wu, Stoll, Valgaerts, and Theobalt} 2013

Citation
Citation
{Anguelov, Srinivasan, Koller, Thrun, Rodgers, and Davis} 2005

Citation
Citation
{Hasler, Ackermann, Rosenhahn, Thorm{ä}hlen, and Seidel} 2010

Citation
Citation
{Hesse, Pujades, Romero, Black, Bodensteiner, Arens, Hofmann, Tacke, Hadders-Algra, Weinberger, Muller-Felber, and Schroeder} 2018

Citation
Citation
{Kadlecek, Ichim, Liu, Krivanek, and Kavan} 2016

Citation
Citation
{Kim, Pons-Moll, Pujades, Bang, Kim, Black, and Lee} 2017

Citation
Citation
{Loper, Mahmood, Romero, Pons-Moll, and Black} 2015

Citation
Citation
{Park and Hodgins} 2008

Citation
Citation
{Pons-Moll, Romero, Mahmood, and Black} 2015

Citation
Citation
{Balan, Sigal, Black, Davis, and Haussecker} 2007

Citation
Citation
{B{€}lan and Black} 2008

Citation
Citation
{Huang, Bogo, Lassner, Kanazawa, Gehler, Romero, Akhter, and Black} 2017

Citation
Citation
{Yang, Franco, H{é}troy-Wheeler, and Wuhrer} 2016

Citation
Citation
{Zhang, Pujades, Black, and Pons-Moll} 2017

Citation
Citation
{Joo, Simon, and Sheikh} 2018

Citation
Citation
{Joo, Simon, and Sheikh} 2018

Citation
Citation
{Romero, Tzionas, and Black} 2017

Citation
Citation
{Zhang, Pujades, Black, and Pons-Moll} 2017

Citation
Citation
{Rhodin, Robertini, Casas, Richardt, Seidel, and Theobalt} 2016

Citation
Citation
{Pons-Moll, Pujades, Hu, and Black} 2017

Citation
Citation
{Huang, Li, Chen, Zhao, Xing, LeGendre, Luo, Ma, and Li} 2018



JIANG ET AL.: HIFECAP 3

ages a multi-view setting for capturing training data. Once our high-fidelity, expressive, and
personalized approach is trained, it only takes a single RGB video as input at inference time.
Monocular 3D Pose Estimation and Performance Capture. Monocular performance cap-
ture is an ill-posed problem with lots of ambiguities (e.g., along the depth dimension and due
to occlusions). Leveraging 2D and 3D joint detections, many methods capture 3D human
motion from monocular images by predicting 3D poses [51, 60, 62, 69, 70, 74, 95] or fit a
parametric body model [3, 8, 38, 44, 45, 49, 78]. Other methods directly regress the body
model parameters [38, 39, 56] or a coarse volumetric body shape [77], and can also jointly
capture body pose with facial expressions and hand gestures [20, 57, 86, 97]. PIFuHD [65]
and SelfRecon [34] work for standing poses and do not generalize to arbitrary poses. More-
over, PIFu[HD] [64, 65] reconstructs per-frame geometry, while our work aims at tracking
a space-time coherent geometry, which by nature is in correspondence over time.

Capturing the non-rigid and dynamic surface of the person’s clothing from monocular
videos remains challenging. MonoClothCap [87] estimates the deforming surface without
the need of a person-specific template. Instead, they deform a parametric body model during
capture. However, they cannot track clothing types with a topology that is significantly
different from the body model, e.g. skirts and dresses.

Most closely related to our work are template-based monocular 3D human performance
capture methods [24, 25, 46, 88, 89]. MonoPerfCap [89] tracks an actor observed in a
monocular video using a 3D actor’s template. This method is based on global energy optimi-
sation, and, hence, its runtime is high and the results appear oversmoothed in many cases. In
contrast, LiveCap [24] achieves real-time performance and DeepCap [25] further improves
3D accuracy by employing a neural architecture and using multi-view supervision during
training. Further, replacing the geometric surface regularization (e.g., as-rigid-as-possible
regulariser) with a physics-based constraint improves the physical plausibility of the defor-
mations [46]. All of the above-mentioned methods cannot regress facial expressions, hand
gestures, and high-frequency deformations. In contrast, our HiFECap approach captures the
state-specific appearance of the face and hands and high-frequency surface details—for the
first time—in a single framework for expressive 3D human performance capture.

3 Method
Given a monocular video of a human in motion, the goal of our method is to regress the
3D deformation of a person-specific template mesh of the human including clothing, hand
gestures, and facial expressions for each of the video frames. To this end, we first acquire
multi-view training images of the human performing a diverse set of actions and define a
differentiable character representation, which efficiently parameterizes the template from
coarse to fine (Sec. 3.1). Then, we propose regression networks in a coarse-to-fine manner,
i.e., we first employ a skeletal pose prediction network and a coarse embedded deformation
network, which captures the piece-wise rigid skeletal deformations and the coarse surface
deformations, respectively (Sec. 3.2). For capturing finer surface details, we propose a novel
hybrid image-to-graph convolutional architecture for predicting per-vertex displacements,
which greatly improves the dynamic surface details (Sec. 3.3). Since supervised learning of
the network models is not possible, we resume to a weakly-supervised setup and propose
a carefully designed combination of loss functions all geared towards high fidelity surface
capture (Sec. 3.4). Last, we replace the face and hand regions of the original template with
parametric models using our proposed registration procedure. Then, a dedicated network is
predicting the facial expression as well as the hand gestures (Sec. 3.5).
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Figure 2: Overview of our HiFECap approach that takes a single segmented image as
input and tracks the corresponding 3D human mesh. PoseNet estimates the 3D skeletal pose
as joint angles and a global rotation. It is followed by coarse-to-fine deformation regression
based on silhouette, rendering and Chamfer losses. EDefNet captures coarse skin and cloth-
ing details by predicting the deformation on the embedded graph. DisplaceNet refines the
results with high-frequency details based on a vertex displacement field (green arrows). We
then replace the corresponding template parts with parametric hand and face models. Given
the input image, a dedicated network then predicts those parameters (yellow arrows).

3.1 Data Processing and Character Representation

For training, we record a multi-view video of the actor performing various motions in a
studio with a green screen background. We detect 2D joint keypoints using OpenPose [15],
apply color keying to extract foreground masks, and generate respective distance transform
images [9] for each view and frame. We use a multi-view stereo reconstruction software
Agisoft Metashape [1] to reconstruct the ground truth mesh VGT, f for each frame. As input
to our method, we randomly sample cropped and segmented frames I f ,c where f and c
denote the frame and camera index. At the same time, other views of frame f are used for
supervision. For testing, we record in-the-wild monocular videos, extract the foreground
masks using Detectron2 [85], and use OpenPose for retrieving 2D keypoint detections. For
simplicity, we omit the subscript f in the following.

Our method requires a person-specific textured, rigged, and skinned 3D template of the
actor. Therefore, we scan the person in a multi-view stereo scanner [75] and use Metashape [1]
to reconstruct the 3D mesh with around N≈5000 vertices. We rig the scanned mesh to a
kinematic skeleton being parameterized with the root rotation α ∈ R3, the global translation
t ∈ R3, and the joint angles θ ∈ R33. We also attach 3D landmarks to the skeleton (21 body
joints and 6 face landmarks). We automatically compute the skinning weights in Blender [29]
and leverage Dual Quaternion Skinning [40] to deform the mesh based on the skeletal pose.
Similar to Habermann et al. [24], we assign a rigidity weight ri to each vertex Vi to account
for the different deformation properties of varying materials. We further define a downsam-
pled version of the mesh as the underlying embedded graph G and model deformations from
coarse to fine using an embedded deformation [68]. G is parameterized with A ∈ RK×3 and
T ∈ RK×3 representing local graph rotations and translations, respectively. Here, K denotes
the number of graph nodes. To capture finer high-frequency geometric details of non-rigid
deformations such as garment folds, we use a 3D vertex displacement map D, i.e., we assign
a displacement vector di ∈ R3 to each mesh vertex. Similar to DDC [26], the final character
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representation vi =Ci(θ ,α, t,A,T,di), internally applies the embedded deformation and the
vertex displacements in a canonical T-pose based on the parameters A,T,di and finally poses
the deformed mesh based on the skeletal pose θ ,α, t.

3.2 Pose Network and Embedded Deformation Network

Similar to DeepCap [25], PoseNet and EDefNet are both Resnet50-based networks [28] that
take the image Ic of view c as input. The network architecture of EDefNet is the same as
DefNet in DeepCap [25], but we train it using additional loss terms in addition to the 2D
supervision proposed in DeepCap (details in supplemental document). PoseNet regresses
the skeleton joint angles θ ∈ R27 and the camera relative root rotations α ∈ R3. The global
translation of the mesh template t ∈ R3 is obtained by a global alignment layer [25]. We
supervise PoseNet with a multi-view 2D keypoint loss and a joint angle regularizer as pro-
posed in DeepCap [25]. EDefNet regresses the embedded deformation parameters A,T,
which capture the coarse surface deformations.

3.3 Visibility- and Rigidity-aware Vertex Displacement Network

To capture high-frequency geometric details, we add a per-vertex displacement network,
DisplaceNet, which takes the input image Ic and regresses the vertex displacement field
D ∈ RN×3 in the canonical pose (di denotes the i-th row of D). For this task, we found
that local image patches usually contain most of the relevant information about the high-
frequency deformation patterns. Thus, we introduce a novel architecture, which maps local
image features onto a graph convolutional architecture to improve accuracy and robustness.
Image Feature Map Encoder. First, we use a U-Net-based image encoder DUNet, which
extracts relevant information about the surface deformation, e.g., wrinkles from the input
image. More precisely, it takes the input frame Ic ∈R256×256×3 and computes a latent feature
map fDUNet,c(Ic) = Fc ∈ R256×256×32 with the same spatial resolution as the input frame.
Visibility-aware Vertex Feature Map. Next, those features in image space are mapped onto
the posed and coarsely deformed mesh: We propose a function Pc(Vi) =Fc,u,v projecting the
mesh vertices into image space by employing rasterization and mapping the image features
at the 2D projected position (u,v) to the respective graph node. Note that the rasterization
is occlusion-aware, i.e., only visible vertices have an attached image feature. However, in a
monocular setting, a significant amount of vertices is usually occluded although we also want
to regress their deformations. Therefore, we argue that the whole image (of visible surface
parts) can still guide the deformation state of occluded parts, e.g., the body pose can roughly
give a hint of the deformations of occluded parts. Thus, we have a visibility sensitive feature
attachment function Fc(Vi) = Fc,u,v if fVisible,c(Vi) and Fc(Vi) = a(Fc) otherwise, which
assigns the projected feature if a vertex is visible and for occluded vertices, it assigns the
average feature, i.e., a(·) averages the per-pixel features over the spatial domain.
Visibility- and Rigidity-aware Graph Convolutional Network. Once each graph node
has an image feature, we employ a graph CNN, DGCN [26] taking these per-node features
and outputting the vertex displacement field fDGCN(Fc(V)) = D′ ∈ RN×3. Here, the graph
is defined by the template mesh itself. Nearly rigid human body parts (e.g., skin and shoes)
should (if at all) only be coarsely deformed. Thus, we create a rigid mask M ∈ RN×3 whose
entries of row i are set to one if ri ≤ εRigid and zero otherwise. Here, εRigid is a threshold. The
displacement field is defined as D = fDGCN(Fc(V))◦M, where ◦ is the Hadamard product.
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3.4 Training of EDefNet and DisplaceNet

Image-based Supervision. The silhouette loss Lsil encourages the deformed mesh to fit the
image silhouettes from all the cameras. As such energy term can be stuck in local minima
due to bad initialization, we employ a 2D multi-view landmark term Lmk as the difference
between the projected 3D markers on the posed skeleton and the detected 2D markers on the
multi-view images. However, the aforementioned losses are not sufficient to supervise fine
deformations such as surface folds. Thus, we deploy a dense rendering loss, which takes the
posed and deformed mesh and the static texture, renders it from various camera views, and
compares the rendered images Rc(V,L,T ) under the camera’s lighting condition L with the
corresponding input frame Ic, Ldr(V,L) = ∑c∥Rc(V,Lc,T )−Ic∥2. Assuming Lambertian
surface and smooth lighting, we employ the spherical harmonics (SH) lighting model [53] to
represent the scene lighting Lc(V, lc) of each camera with 27 coefficients lc ∈ R9×3. Then,
the lighting condition for each camera can be computed as Lc(V, lc) = ∑

9
j=1 lc, jB j(nc(V))

where nc(V) is the pixel normals of the geometry from the camera c. Since scene lighting is
assumed to be unknown, we also optimize it as described later.
Chamfer Loss. Ldr helps to recover in-camera-plane deformations but struggles with cap-
turing deformations along the camera viewing direction. Therefore, we employ a Chamfer
loss between the posed and deformed mesh V and the per-frame stereo reconstructions VGT:
Lcf(V) = ∑i min j∥Vi −VGT,j∥2 +∑ j mini∥VGT,j −Vi∥2. Note that it can suffer from drifts
along the surface, which Ldr can prevent. Thus, we use the combination of two.
Spatial Regularization. To regularize the deformations, we impose an as-rigid-as-possible
regularizer on the deformation graph [66] and use material-aware weighting factors [25] to
deal with different levels of rigidity. We also employ a Laplacian Llap and isometry Liso
regularization on the deformed and posed template mesh similar to Habermann et al. [24].
Training stages. We train the EDefNet in two phases while keeping the trained PoseNet
fixed. At this stage, the displacements are set to zero in the character representation. We first
train the embedded deformation network using the combined loss LEDefNet = Lsil +Lmk +
Larap [66]. The different weights do not affect the training significantly; thus, we currently
use an equal weighted sum in all experiments. Once converged, the lighting parameters are
optimized as an in-between step. Note that this is only possible when coarse deformations are
already learned, and thus the model already roughly overlays to the ground truth images. To
optimize the lighting coefficients across all the frames in the training sequence, we minimize
∥Rc(V,Lc(V, lc),T )−Ic∥2 by iteratively sampling the training frames. Here, T is the static
template texture. After convergence, we train EDefNet further and add the differentiable
rendering loss [35, 47] Ldr using the optimized scene lighting and the Chamfer loss Lcf.

While training DisplaceNet, the weights of PoseNet and EDefNet are fixed and the char-
acter representation adds the displacements on top of the embedded deformation. For super-
vision, we leverage the combined loss function LDisplaceNet = Lsil +Ldr +Lcf +Liso +Llap.
More details regarding the losses are provided in the supplemental document.

3.5 Tracking of Hands and Face

So far, only the skeletal pose and the surface deformations are tracked. To enable the joint
tracking of hands and face as well, we replace the face and hand regions on the template mesh
with a parametric 3D face model [7] and hand model [63] as described in the following.
Face. We leverage the parametric face model of Blanz and Vetter [7] with the surface ge-
ometry being defined as VF = VF +∑

80
i=1 wS,iσS,iBS,i +∑

64
j=1 wE, jσE, jBE, j , where VF is the
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mean face. BS,i ∈ R80×53490, and BE,i ∈ R64×53490 are the PCA bases for shape and ex-
pression variations. σS,i and σE,i are the corresponding standard deviations. wS,i ∈ R80 and
wE,i ∈R64 are the face shape and expression parameters. We removed the neck and ear parts
of the model to better fit our template in the following.
Hands. We utilize the parametric MANO model [63] for the hands embedded in a joint
and fully articulated body and hand model called SMPL+H model defined as MSH = MSH+

∑
16
i=1 wSH,iBSH,i, where MSH is the mean body shape with hands. BSH,i ∈ R16×6890 are the

PCA basis for body shapes with hands and wSH,i ∈ R16 are the PCA coefficients. The posed
and deformed mesh is defined as VSH = B(MSH,W,θ b,θ h) where B(.) is the linear blend
skinning function, W is the skinning weights, θ b ∈ R22, and θ h ∈ R15×2 are joint angles for
body and hands. We set θ b and θ h to zero to obtain the deformed model in the canonical
T-pose V̂SH and then only consider the MANO vertices V̂H.
Unposing to the Canonical Pose. The original 3D template mesh M in the rigging pose can
differ in terms of its local rigid rotation with respect to the face and hand model. For a better
optimization for the personalized face model and hand stitching, we unpose the original 3D
template to the canonical pose Mtpose using Dual Quaternion Skinning.
Personalized Face Model. To retrieve the personalized face model, we fit the face model to
the original template in the canonical pose Mtpose as follows. First, we optimize the affine
transform between the model and the template by optimizing the affine parameters including
Euler angles for rotation αF ∈R3, translation vector tF ∈R3, and scaling sF ∈R. We convert
the Euler angles αF to a rotation matrix RF ∈ R3×3. Then, the updated face model vertices
V′

F can be computed as V′
F = sFRF(VF)+tF. To optimize the affine parameters, we manually

mark 8 facial landmarks on the scanned template mesh and the face model (2 on each eye,
2 on lips, 1 on nose, 1 on jaw), respectively, and minimize the difference between the two
sets in the least-squares sense. We then fix the affine transform and deform the face model
to match the template geometry by optimizing the shape parameters wS and the expression
parameters wE. To this end, we minimize the Chamfer distance between the face model
and template mesh as well as the distance between the two sets of markers. Then, we once
more optimize the affine parameters by minimizing the aforementioned distances. Finally,
we directly optimize the positions of the face model vertices by minimizing the Chamfer
distance resulting in the updated face model position V′′

F. We retrieve our final neutral face
as V̂F = V′′

F −∑
64
j=1 ŵE, jσE, jbE, j where ŵE, j are the optimized face expression parameters.

To connect the hand and face models with the template, we use an automated gap-filling
technique in Blender [29] in the canonical space M̂tpose. Finally, we repose the template to
get the updated template mesh in the rigging pose M̂. Therefore, the skinning weights of
the closest template vertex are copied to the hand and face model vertices.
Regression of Hand and Face Parameters and Posing. Given an input frame f , we use
the pre-trained model of Zhou et al. [97] to regress the facial expression parameters wE,f and
the hand pose parameters θ H, f . Importantly, we do not leverage the regressed face shape,
but we use our optimized face model as the identity. We then apply the regressed facial
expression and hand pose parameters to the template in the canonical pose. Finally, we pose
and deform the template by using the regressed embedded deformation A,T from EDe f Net,
the displacement map D from DisplaceNet, and the body pose θ ,α, t from PoseNet.

4 Results
Data. Our method is person-specific and we aim at generalization to novel poses and en-
vironments. Thus, we captured 3 subjects in different types of apparel (e.g., skirts and
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Figure 3: Qualitative results for subjects with different types of apparel, poses, and back-
grounds. Our method not only precisely overlays onto the input images, but also captures
the wrinkle patterns nicely. Even the occluded regions look plausible in the back views.

Figure 4: Comparisons. Our method can capture high-frequency details on the non-rigid
clothing surfaces, facial expressions, and hand gestures. DeepCap [25] cannot dynamically
capture face and hands, while Zhou et al. [97] cannot capture the non-rigid deformation. Our
method can better capture dynamic non-rigid clothing details than DeepCap [25].

trousers). Per subject, we captured around 20k multi-view video frames for training (only in-
studio green background). For testing, several separate 2k-frame videos in novel in-the-wild
environments and poses are captured using a BlackMagic camera. We recorded in different
environments (e.g., indoors, outdoors, in-studio) to test the generalization of our approach
to novel lighting conditions. All the sequences include a large variety of different and chal-
lenging motions. We apply a domain adaptation step proposed by Habermann et al. [25] by
finetuning our pre-trained networks on the monocular test sequences. For quantitative eval-
uations, we also recorded 5 in-studio sequences to be able to acquire ground truth meshes
using multi-view stereo [1].
Qualitative Results. We visualize monocular results in Fig. 3 and the supplement with
different clothing, motions, and backgrounds. Our reconstruction jointly captures facial ex-
pressions, hand poses, and high-frequency details on clothing. It overlays precisely with the
input images and achieves plausible results for the occluded areas. The recovered clothing
wrinkles of the posed and deformed template match the ones in the input images.
Comparisons. There is no dataset with joint ground-truth skeletal pose, hands, face, and
cloth tracking and obtaining such is far from being trivial. So it is hard to quantitatively
evaluate them in our setting. As an alternative, we show extensive qualitative results for
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Figure 5: Qualitative comparison. Compared to other methods, HiFECap can better capture
high-frequency details on the non-rigid clothing surfaces and facial expressions as well as
hand gestures and be generalizable to different clothing, motions, and backgrounds.

face and hands in Fig. 4 and our supplemental material. In Fig. 5, we further compare our re-
sults qualitatively with related approaches. Compared to our approach, DeepCap [25] cannot
capture high-frequency details on the clothing due to the limited capacity of the embedded
graph and the silhouette-only supervision strategy. Our method can capture more accurate
clothing details than DeepCap corresponding to the input video. Although DeepCap tracks
the clothing, it outputs very different (mostly coarse and global) wrinkles compared to the
ones observed in the input. By leveraging image convolutions and graph convolutions, our
new architecture, DisplaceNet, regresses the per-vertex displacement field. It captures the
dynamic high-frequency details on the nonrigid deforming surface while DeepCap only de-
forms the static clothing of the input template by matching the silhouette of the deforming
clothing using 2D supervision. Furthermore, DeepCap can only capture the pose and cloth-
ing deformations, while our approach can dynamically capture facial expressions and hand
poses. Our input video captures the entire body without additional information about hands,
and we further localize the hands to capture these parts. Thus, existing hand-only methods
cannot be directly applied to our setting as our method requires cropping and alignments of
the human’s hands, face, and body. Concerning full-body methods, we show superior hands
and face capture results compared to previous work. Zhou et al. [96] jointly regresses fa-
cial expressions, hand poses, and the body pose, but it is not able to capture the non-rigid
deformation of the clothing at all, and VIBE [43] only captures body and hand poses.
Quantitative Results. We evaluate the accuracy of the recovered non-rigid deformation be-
tween our method and related works [25, 43, 97]. Tab. 4 shows the quantitative results of
these methods for three test sequences by computing the average Chamfer distance and the
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Figure 6: Visualization of the per-vertex error (MSE) of our method and DeepCap [25]
compared to the ground truth meshes. Our method has significantly lower error indicating
our method better captures high-frequency non-rigid surface deformations.

Sequence 1 Sequence 2 Sequence 3
Method Chamfer↓ Hausdorff↓ Chamfer↓ Hausdorff↓ Chamfer↓ Hausdorff↓

Ours 7.25 39.72 9.21 40.07 7.26 32.69
DeepCap [25] 21.09 77.83 14.32 107.21 17.88 98.49
Zhou et al [97] 24.49 133.95 51.35 230.42 34.83 157.11

VIBE [43] 47.21 121.15 72.00 229.90 82.24 224.60

Table 1: Quantitative comparisons. Our method significantly outperforms other approaches
in terms of Chamfer distance and Hausdorff distance with respect to the ground truth. The
accuracy of our method increased by almost 50% compared to the state-of-the-art DeepCap.
Our approach can better capture high-frequency details on the dynamic non-rigid surfaces.

average symmetric Hausdorff distance between the output and ground truth meshes. We ob-
serve that our method achieves higher accuracy in terms of both metrics confirming that our
reconstruction results can capture high-frequency details on the non-rigid parts. In Fig. 6, we
show the 3D reconstruction results of our approach and the state-of-the-art approach Deep-
Cap and visualize their per-vertex errors to the ground truth meshes. Note that we do not
apply the dynamic hand pose and facial expressions here to evaluate the non-rigid clothing
deformations separately. Our method especially outperforms DeepCap in the dynamic cloth-
ing areas indicating that such dynamic deformations are better recovered by our approach.

5 Conclusion
In this paper, we presented HiFECap, the first monocular human performance capture ap-
proach, which jointly tracks the body pose, hand gestures, facial expressions, and high-
fidelity non-rigid surface deformations. We showed that higher-fidelity character surface
tracking can be achieved by adding a dedicated displacement network to the character de-
formation process, which is a hybrid network architecture leveraging image convolutions
and graph convolutions with locality preserving receptive fields. Further, tightly coupling
the template with parametric hand and face models enables the tracking of all aspects of the
human. In our experiments, we validated these design choices and show that we improve the
current state-of-the-art in terms of space-time coherent surface tracking. While this work is
a clear step towards expressive capture of humans, we still believe that there is a lot of future
work to be done, especially in the areas of physically correct human tracking and real-time
performance, which would enable monocular performance capture in VR and AR settings.
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