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In this document, we will first supplement some statistics of benchmark datasets and
detailed settings of the experiments. Then, in order to investigate the properties of our pro-
posed RMG-PMSI, we conduct a series of ablation experiments to evaluate its key designs.
Finally, we also test the impact of input size on model performance and delay.

1 Statistics of benchmark datasets
We evaluate the performance of the proposed method on three fine-grained visual classi-
fication (FGVC) datasets: CUB-200-2011 (CUB)[8], Stanford Cars (Car)[5], and FGVC-
Aircraft (Air)[7]. Examples selected from the three datasets are shown in Figure 1. The
detailed information of each dataset is shown in Table 1.

2 Experimental setup details
Next, we describe some implementation details of the experiments in the paper, including
implementation details for MobilenetV2 and Efficientnet-B0 Baseline, and the implementa-
tion details of the SOTA FGVC methods on the MobilenetV2 backbone.

2.1 MobilenetV2 and Efficientnet-B0 baseline
For the standard MobilenetV2, Efficientnet-B0(baseline), we use the ImageNet pre-trained
model, the initial learning rate of the convolutional layer is 0.001, and the learning rate of the
new classifier layer is 0.01, and reduced by the cosine annealing schedule. We train them for
up to 150 epochs with a batch size as 32 and use a weight decay of 0.0005 and a momentum
of 0.9.
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Table 1: Statistics of benchmark datasets.
Dataset #Classes #Train #Test

CUB-200-2011 200 5994 5794
Standford Cars 196 8144 8041
FGVC Aircraft 100 6667 3333
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Figure 1: Examples from datasets of CUB [8], Car [5] and Air [7](left to right).

2.2 FGVC SOTA Method

We compare our approach with 8 representative FGVC approaches, namely BCNN[6], HBP[10],
PC[3], NTS-NET [9], DCL[1], PMG[2], API-NET[11], and Snapmix[4]. Since these works
do not formally report the results of using lightweight networks as feature extractors, we
implement these methods on MobilenetV2 based on published code and experiment on fine-
grained datasets.

Unless otherwise specified, for the following methods, We use Momentum SGD with
weight decay 1e-4, the initial learning rate of the backbone is 1e-3, and the learning of new
layers (such as classification layers) is 10 times that of the backbone, i.e., 1e-2, using cosine
annealing learning rate decay. batch-size=32; epochs=150.

BCNN[6]. We use the MobilenetV2 Stage4 as the output for bilinear pooling, just as
mentioned in the paper. Firstly, the size of the bilinear pooling feature map is entered as
(28, 28, 96), which is activated by a RELU, followed by the Bilinear pooling operation. The
size of the output feature graph is (96× 96). This is followed by one-dimensional Batch
normalization. Finally, a full connection layer FC is used for classification.

HBP[10]. Like RMG-PT, we use the output of the last three stages as the three levels
of HBP. HBP requires the feature maps of the three levels to be of the same size, so we use
downsampling to map the length and width of Stage3 and Stage4 to be the same as that of
Stage5, which is 14×14. As mentioned in the paper, HBP raises the channel dimension for
each level to 8192. Then conduct the Bilinear pooling operation in pairs. This is followed
by one-dimensional Batch normalization. Finally, a full connection layer FC is used for
classification.

PMG[2]. Like RMG-PT, we use the outputs of the last three stages as the three stages
of PMG. Then we use smooth conv to make the number of channels consistent across the
different stages. In each stage, different granularity jigsaw patches are used as input for
training. Finally, the outputs of different stages are concatenated and then run through the
fully-connected layer classifier as the result of classification.

PC[3]. In addition to the cross entropy loss of MobilenetV2 itself, we add pairwise
confusion loss as a regularization method according to the paper. That is, the different condi-
tional probability distributions are brought closer together and the deep network is confused,
so as to reduce the over-confidence in its prediction and improve the generalization perfor-
mance. The optimization objective is to reduce the cross entropy loss of each sample in each
class and reduce the Euclidean distance between the probability distributions of different
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classes. Specifically, each batch of the training set is randomly divided into two parts, and
then for each pair of points in the two parts, as long as the samples belonged to different
classes, Euclidean confusion is added. We set the coefficient of this pairwise confusion loss
as 0.5(in the experiment, we found that it is difficult to converge if the coefficient is too
large), and then add the standard cross entropy to optimize the loss as a whole.

NTS-Net[9]. Resnet-50 is used as a feature extractor in the original paper, we only
replace the feature extractor with MobilenetV2, and other Settings remain the same as in
the original text. In other words, K=4, M=6(which means 6 regions are used to train the
Navigator network for each image).

DCL[1]. We use MobilenetV2 as the feature extractor and the other hyperparameter
settings refer to the original text. For example, we set Partition Granularity to 7 for CUB
and Car training, and Partition Granularity=2 for Air. It is worth mentioning that in order to
ensure that the model is fully trained, we add an additional 50 epochs to the 150 epochs, i.e.
200 epochs.

API-Net[11]. For each pair of images, we connect x1 and x2 as input to a two-layer MLP,
namely FC(2560→512)FC(512→1280), as the result of interactive learning. Besides, during
the training phase, we freeze the conv layers and only train the newly-added fully-connected
layers in the first 8 epochs. Other super parameter Settings refer to the original text.

SnapMix[4]. SnapMix is a data augmentation approach designed for FGVC using Class
Activation Maps (CAMs) and we apply it to the training standard MobilenetV2. The hy-
perparameter α of snapMix decides a beta distribution that is used to generate a random
patch in mixing. Based on the published code, we set this hyperparameter to α = 1.0. Other
hyperparameter settings refer to the original text.

3 Supplementary ablation experiment

In this section, we present a series of ablation experiments to validate the key design of our
method, including (i) the influence of stage num; (ii) the influence of each component on the
model’s anti-interference.

3.1 The impact of StageNum

To demonstrate the efficacy of progressive interaction training, we conduct experiments with-
out a Recursive Mosaic Generator (RMG) on CUB dataset. We set the enlargement of the
receptive field as the division between this stage and the next stage. In order to obtain the
best performance and prevent excessive noise from being introduced by too shallow layer
features, we use the last 5 stages as our experimental setup. The StageNum increases from 1
to 5. We use Top-1 Accuracy (Acc) as the evaluation criterion. The results of the experiment
are shown in table:2, where Mix represents a mixed classification result P.

As the results show, when the number of stages (S) involve in interactive training is less
than 4, the increase in StageNum improves the model’s performance. Then, Mix Acc began
to decline when the StageNum=4. This might be caused by the low-stage layer focusing on
class-independent features. However, the additional supervision forces the low-stage layer
(S=1,2) to focus prematurely on the features associated with classification, thus introducing
too much low-stage noise to the high-stage classification through progressive interaction,
resulting in a decrease in accuracy. In addition, using multi-stages of progressive interaction
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Table 2: The performance of the proposed model when interacting at different stages.

Acc(%)

Stage(S) / StageNum S1 S2 S3 S4 S5 Mix
{5} / 1 - - - - 84.2 84.3
{5, 4} / 2 - - - 84.7 84.5 85.2
{5, 4, 3} / 3 - - 82.9 84.8 84.3 85.9
{5, 4, 3, 2} / 4 - 80.5 83.3 84.7 83.9 85.7
{5, 4, 3, 2, 1} / 5 74.2 81.7 83.0 84.5 84.3 85.1

Table 3: Comparison of anti-interference ability of baseline and RMG-PMSI.
CUB Car Air

Baseline +RMG-PMSI Baseline +RMG-PMSI Baseline +RMG-PMSI
Origin 81.5 87.1 90.9 93.8 88.9 91.5

+ Color-Jitter 14.1 (-67.4) 59.9 (-27.2) 69.7 (-21.2) 79.3 (-14.5) 64.7 (-24.2) 73.9 ( -17.6)
+ Gaussian-Noise 22.2 (-59.3) 78.6 (-8.5) 75.0 (-15.9) 86.5 (-7.3) 82.6 (-6.3) 86.6 (-4.9)

can lead to increased training costs. To sum up, we use the last three phases (S=5,4,3,
StageNum=3) as the optimal choice for progressive interactive training.

3.2 Anti-interference analysis

After justifying the transferability of the RMG-PMSI on different efficient mobile back-
bones. We further test the anti-interference capabilities of RMG-PMSI. We use Color-Jitter
to generate interference data on the testset of the three datasets. We set the Jitter coefficient
to be 1, i.e., the image’s brightness, contrast, and saturation will be randomly adjusted to
0% to 200% of the original image. In addition, we also generate interference images with
Gaussian-Noise (mean=0, variance=0, amplitude=5) on the testset of the three datasets. And
then we test these two interference data respectively on the standard MobilenetV2 (baseline)
and MobilenetV2 with RMG-PMSI. The experimental results are shown in Table 3.

It can be seen that the accuracy degradation of RMG-PMSI on the two types of inter-
ference data on the three testsets is less than the baseline. Especially on CUB200, the anti-
interference ability of RMG-PMSI is far better than the baseline. This may be because the
distinction of birds mainly comes from some important local parts, such as eyes, feathers,
and beaks. Adding interference will have a greater impact on global information, and the
introduction of local information through RMG-PMSI can effectively alleviate this global
interference.

Then, in order to further verify the contribution of different components of RMG-PMSI
to the model’s anti-interference, on the basis of the previous anti-interference experiment, we
conduct experiments on the anti-interference of different components on the CUB dataset.
The experimental results are shown in Table 4.

It can be seen from the experimental results that whether it is multi-stage interaction (M)
or progressive training (P), the anti-interference of the model can be greatly improved. At the
same time, compare to multi-stage interaction (M), the supervision imposed by progressive
training (P) at different stages can help the model better obtain local and global features, so
the anti-interference is stronger.
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Table 4: The influence of each component on the model’s anti-interference.
Origin +Color-Jitter +Gaussian-Noise

Baseline 81.5 14.1 (-67.4) 22.2 (-59.3)
+M 85.1 52.9 (-32.2) 72.0 (-13.1)
+P 85.5 56.3 (-29.2) 77.7 (-7.8)
+P&M 85.9 59.4 (-26.5) 77.8 (-8.1)
+P&R 86.8 60.2 (-26.6) 78.3 (-8.5)
+P&M&R 87.1 59.9 (-27.2) 78.6 (-8.5)

Table 5: Influence of input-size on model performance and delay.
method Input-size CUB Car Air delay(s)

Baseline (MobilenetV2) 78.0 86.6 84.5 0.246
+ RMG-PMSI (ours) 224 86.5 (+8.5) 93.6 (+7.0) 91.0(+6.5) 0.287 (+0.041)

Baseline (MobilenetV2) 81.5 90.9 88.9 1.029
+ RMG-PMSI (ours) 448 87.1 (+5.6) 93.8 (+2.9) 91.5 (+2.6) 1.094(+0.065)

4 Influence of Input size on Model Performance and Delay
To further explore the delay of the model in real application scenarios and the influence of
input size on model performance. We test our model on a Microsoft Surface Pro 7 (In-
tel(R)Core(TM) I5-1035G4 CPU @ 1.10GHz, 8G RAM). Specifically, we fully test the
effect of two commonly used input sizes (224/448) on the model top-1 Acc(%) on three
datasets. For the delay test, we randomly select 20 images on CUB/Car/Air respectively,
scale them to different input sizes and put them into the model for testing, and calculate
the average latency of each image. It should be emphasized that, in order to make a more
intuitive and fair comparison, we do not do any optimization, and directly test the model on
the Surface Pro 7 without any Conv and BN layer merging or quantization operations (e.g.,
INT8 quantization). Experimental results are shown in Table 4 and Fig.2.

The results are surprising. When the input size is changed from 448 to 224, the accuracy
of RMG-PMSI did not decrease significantly in the three different datasets. In contrast, for
standard MobilenetV2(baseline), when the input size is adjusted from 448 to 224, there is a
significant decline in accuracy. This shows that RMG-PMSI can increase the robustness of
the model to the input image resolution, which is very exciting.
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Figure 2: Influence of input-size on model performance.
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Figure 3: Delay comparison between RMG-PMSI and baseline.

In addition, it is worth emphasizing that in the inference phase, RMG-PMSI does not use
RMG or involving multi-phase model. The model only computes the outputs of different
stages and combines them, which can be done in parallel and used for real-time predictions.
As shown in Fig.3, when the input size is set to 224, the delay of RMG-PMSI model is sig-
nificantly reduced and only a slight reduction in model accuracy compared with that when
the input-size is set to 448, which provides very good feasibility for the deployment and
application of mobile terminals. At the same time, when input-size is fixed, compared with
the baseline and RMG-PMSI, it can be found that RMG-PMSI only brings a small increase
in time with significantly improved accuracy, which is totally acceptable. It also proves once
again that RMG-PMSI is a novel training method designed for mobile networks on FGVC
tasks, bringing a huge performance improvement with only a small increase in the computa-
tional overhead in end-to-end inference.
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