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Abstract

Animal pose has many potential applications in various fields. However, uncontrol-
lable illumination, complex backgrounds and random occlusions in in-the-wild animal
images often lead to large errors in pose estimation. To address this problem, we pro-
pose a method for refining the initial animal pose with 3D prior constraints. First, we
learn a 3D pose dictionary from synthetic data with each atom providing 3D pose prior
knowledge. Then, the 3D pose dictionary is used to linearly represent the potential 3D
pose corresponding to the 2D pose that has been initially estimated for the animal in 2D
image. Finally, the representation coefficients are optimized to minimize the difference
between the initially-estimated 2D pose and the 2D-projection of the potential 3D pose.
Moreover, to deal with the data scarcity, we construct 2D and 3D animal pose datasets,
which are used to evaluate algorithm performance and learn 3D pose dictionary, respec-
tively. Experimental results show that the proposed method is capable to utilize 3D pose
knowledge well and is effective in improving 2D animal pose estimation.

1 Introduction

As a challenging task in computer vision, animal pose estimation has a wide range of prac-
tical applications. For instance, animal pose estimation could be employed in markerless
motion capture systems to remove intrusive markers. Animal pose estimation would also
support advances in entertainment, where most animal animations are still performed man-
ually. In neuroscience, tracking animals is fundamental for understanding the relationship
between behavior (or movement) and brain activity. In bio-inspired robotics, understanding
how animals move can help to design more efficient robots. Despite its promise, there is
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(b)

Figure 1: Examples with poses successfully refined by the proposed method. Ground truth,
initial and refined poses are shown in red, and colors, respectively. The circles
indicate significant deviations.

little work related to animal pose estimation. This can be attributed to the following factors.
First, animals have far more variation in shape and pose than the human. Second, there is a
lack of well-annotated datasets for animal pose estimation. Typical human pose estimation
benchmarks, such as Human3.6M [[I0], capture data from 15 sensors and obtain motion re-
lying on small markers attached to the subjects body. However, it is impractical to bring wild
animals into a laboratory environment for scanning in specific poses.

Most existing approaches address data limitations by transferring knowledge from other
more accessible domains such as synthetic animal data [, T8, 74, P8, P9] or human datasets [3].
However, there are some domain gaps [8, 9, 22] between synthetic images and real images,
which prevent models trained on synthetic images from generalizing well to real-world im-
ages. In addition, the existing animal pose models are trained on images only with 2D
annotations, because 3D pose annotations are very hard to obtain or even to define. 2D poses
are projection of the 3D body configuration, and 3D structural information is distorted in this
process. Therefore, models trained only with 2D annotations may not conform to the true
prior configurations of animal poses.

This problem can become severe, especially in wild animal images with uncontrollable il-
luminations, complicated backgrounds and random occlusions, as illustrated in Fig. [l. These
factors often lead to large errors in animal pose estimation, which are not considered by exist-
ing methods. Given this, we propose a method with 3D constraints to refine 2D animal pose,
and encode 3D prior constraints in 3D pose dictionary. As can be seen in Fig. [ll, taking tigers
as example, the proposed method can estimate more accurate 2D poses. The contributions
of this paper can be summarized as follows:

* We propose a novel method for 2D animal pose refinement using 3D constraints for
the first time.

e We construct a 3D animal pose dataset using synthetic methods for 3D pose dictionary
learning. Furthermore, we collect and manually annotate images to build a 2D animal
pose dataset for algorithm evaluation.

» Extensive experiments are conducted to evaluate the proposed method. Experimental
results show that the proposed method is effective in improving accuracy of 2D animal
pose estimation.
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The remainder of this paper is organized as follows. We discuss related work and mo-
tivation in Section . Sections B and B provide details of the established datasets and the
proposed method, respectively. Our experimental results are presented in Section B. Finally,
we conclude the paper in Section B.

2 Related Work

2.1 Dictionary-based Human Pose Estimation

Dictionary-based methods are widely used in human pose estimation [24, P&]. In these
methods, 3D pose is defined by a set of joints and is assumed to be represented by a linear
combination of predefined pose bases and sparse coefficients. Given the 2D correspondence
of the joints in a single image, the calculation problem is to simultaneously estimate the
coefficients of the sparse representation as well as the viewpoint of the camera. For ex-
ample, Ramakrishna et al. [Z0] propose a sparse representation based approach to estimate
3D human pose from 2D annotations in a single image. They present a projected match-
ing pursuit algorithm for reconstructing 3D poses and camera settings by minimizing the
re-projection error. Wang et al. [23] propose to estimate the 3D pose by minimizing an L1-
norm penalty between the projection of the 3D joints and the 2D detections to reduce the
impact of inaccurate 2D pose estimations. Zhou et al. [26] adopt an augmented 3D shape
model to achieve a linear representation of shape variability in 2D and propose to use the
spectral-norm regularization to penalize invalid cases caused by the augmentation. Akhter
and Black [[] integrate joint-angle limits into the sparse representation to reduce the possi-
bility of invalid reconstruction. Such methods have achieved promising results in 3D human
pose estimation, inspiring us to exploit pose dictionary in animal pose estimation.

2.2 Animal Pose Estimation

Thanks to the great success of deep learning, these neural networks have been applied to
pose estimation in laboratory animals such as fruit flies, mice, and locusts [6, [Z, I3, TY].
These laboratory animals are usually in a controlled environment, and researchers can easily
collect and annotate data for neural network training. For wild animals, however, available
datasets are very few due to the difficulty and cost of collection and annotation. To solve this
problem, Cao et al. [B] believe that there is similarity between human and quadruped mam-
mals. Thus, they propose a cross-domain adaptation scheme to learn a shared feature space
between human and animal poses, so that their network can learn from existing human pose
datasets. Mu et al. [[8] use synthetic animal data generated from CAD models to train their
model, and then generate pseudo-labels for unlabeled real animal images. Subsequently, the
generated pseudo-labels are gradually incorporated into training based on three consistency
check criteria. Li and Lee [[?] design a multi-scale domain adaptation module to reduce
the gaps between synthetic and real data. Meanwhile, a coarse-to-fine pseudo-label update
strategy is introduced, and more accurate pseudo-labels are gradually replaced in the training
process, so as to improve the accuracy of the model.

Despite the improvements made by these approaches [3, B, 12, 9, I8, 9], animal pose
estimation is still non-trivial. These methods are trained on images with 2D pose annotations,
which may not follow the actual distribution of animal poses and degrade their performance
very likely, especially for poor quality images. In this paper, we aim to explore 3D prior
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constraints to refine the initial animal pose, so such that the misaligned keypoints caused by
image noise can be corrected towards their true positions. Inspired by [, DU, D3, 04, D6],
we use 3D pose dictionary to encode 3D prior constraints, which is simple and effective.
Note that [0, 20, 3, P4, P6] require large-scale real 3D human poses as the training data
for the dictionary, but collecting real 3D animal pose data is very difficult if not impractical.
To address the lack of 3D animal pose data, we collect and synthesize data for 3D pose
dictionary learning.

(d)

Figure 2: (a-c) are examples of keypoints in the dataset Cat. Red dots indicate the keypoints
that are defined in Table [. (d) The joints defined in ATRW [I[3].

Index ‘ Definition ‘ Index ‘ Definition ‘ Index ‘ Definition

1 forehead 10 end of tail 25 (30) | left (right) foot

2 spine 0 11 (17) | left (right) shoulder 26 (31) | left (right) ankle

3 spine 1 12 (18) | left (right) front thigh | 27 (32) | left (right) toe

4 spine 2 13 (19) | left (right) front shin 33 (36) | left (right) ear

5 spine 3 14 (20) | left (right) front foot 34 (37) | left (right) eye outer corner
6 spine 4 15 (21) | left (right) front ankle | 35 (38) | left (right) eye inner corner
7 root of tail | 16 (22) | left (right) front toe 39 nose

8 tail 1 23 (28) | left (right) thigh 40 chin

9 tail 2 24 (29) | left (right) shin - -

Table 1: Keypoint definition for the dataset Cat.
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3 Dataset Collection

In order to learn 3D pose configurations and impose 3D prior constraints in 2D pose refine-
ment, we built a 3D cat pose dataset called Cat. This dataset contains more than 400 images
from the internet. The details are as follows. First, we define the keypoints (as illustrated in
Fig. D(a)-2(c) and Table M) with reference to Kanazawa et al. [IT1]. Second, we use Kanazawa
et al. [TT] to synthesize corresponding deformable shapes. Third, we pick the joints defined
by ATRW [[[3] on the 3D deformable shapes to generate 3D poses (as illustrated in Fig. Di(d)).
The synthesized 3D pose dataset can be used for 3D pose dictionary learning, and the learned
3D pose dictionary encodes 3D prior constraints that facilitate animal pose refinement.

4 Proposed Method

In this section, we first describe the proposed method for constructing a dictionary of 3D
animal pose and then introduce the proposed method for 2D pose refinement with 3D con-
straints based on the learned dictionary. The pipelines of constructing the dictionary of 3D
animal pose and 2D pose refinement with 3D constraints is illustrated in Fig. B.

\
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(a) 3D Pose Dictionary Learning

Linear Combination

Dictionary Learning
_ ]

Ry

Optimization W Projection IT

N\
ANRRNY
Input Initial Pose W 3D Pose § Refined Pose W

(b) 2D Pose Refinement with 3D Constraints

Figure 3: Overview. (a) We construct a 3D pose dataset (as described in Section B) to learn
a 3D pose dictionary B, which is used to provide 3D prior constraints. (b) In the 2D pose
refinement stage, the 2D pose W corresponding to the image is initially estimated by the
existing algorithms. The optimization is performed via combining the initial pose W and the
3D constraints provided by the 3D pose dictionary B, a more accurate 2D pose W is obtained.

4.1 3D Pose Dictionary Learning

With the proposed 3D pose dataset descibed in Section B, we use dictionary learning to find
a good basis for 3D poses. It is hoped that this basis generates a complete 3D pose space, so
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that any sparse representation of 3D poses seems reasonable under this basis. Our dictionary
learning task can be formulated as follows:

N 1 K 2
min Y = (1S, — Y CuiBi|| +2]Cl;,
BC 512 k=1 F

st. Cur>0, ||Bellp <1, Ye€ell,K], nel[l,N],

ey

where A is a non-negative parameter; K is the number of atoms in the dictionary; N repre-
sents the number of training samples; S, denotes a 3D pose in the collected dataset; By, is the
basis pose to be learned, and C, ; represents the kth coefficient of the representation of §,,.
The two term in the cost function corresponding to the reconstruction error and the sparsity
of representation, respectively. K is set to 128 by default in this paper.

4.2 2D Pose Refinement with 3D Constraints

As illustrated in the orange background of Fig. B. Given an input image, an initial 2D pose
W is first estimated using the existing methods such as HRNet [21]. For this initial 2D pose,
it actually corresponds to some latent 3D pose S. It is generally assumed that they are related
to projection (camera calibration matrix) I1. Specifically,

W ~TIS, @

where W € R?*P, § € R3*?, and p represents the number of joints. W and S represent 2D
pose and 3D pose, respectively. IT is usually defined based on the weak perspective camera

model as:
a 0 0

where a is a scalar depending on the focal length and the distance to the object [26].

According to Eq. (&), 2D pose W can be obtained if the latent 3D pose S is accessible.
Conversely, the given 2D pose W, the latent 3D pose S is almost unknown. Although es-
timating 3D pose from a 2D image is an ill-posed problem, this pursuit does not actually
appear to be in vain. Similar attempts such as face recognition have proven to be very fruit-
ful in recovering 3D information from 2D images. Therefore, with the estimated 2D pose W
we hope to recover the latent 3D pose using the learned 3D pose dictionary. Similar to the
active shape model [8], we assume the latent 3D pose has a sparse representation:

K
S= Z CkRkBk, (4)
k=1

where B; € R3*? for k € [1,K] represents a basis pose in the learned dictionary. While
¢y denotes the weight of each basis pose, Ry rotation matrix. Then, we use the following
objective funtion to estimate a latent 3D pose:

2

min —
M; ’M](2

K K
W—Y MB|| +a) 1M, Q)
k=1 =1

F k=

where M, = ¢, I1R; with MM, kT = c,%lz, and I, is the unit matrix of size 2 X 2. o is a predefined
coefficient of the regularization. With {Mk}{( we can finally obtain our refined 2D pose W,
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which is the projection of the estimated latent 3D pose S, i.e.,

K K
W=MS=TY cRiBi= ) MB. (6)
k=1 k=1

The 3D constraints lie in that the latent 3D pose S is a sparse representation of the learned
basis poses, and our refined estimated 2D pose is a projection of this representation.

S Experiments

5.1 Datasets

Amur. ATRW [[3] is a relatively complete dataset that can be used for Amur tiger detection,
pose estimation and re-identification. Some poor frames are discarded due to occlusion, mo-
tion artifacts, illumination or other noise. To validate the advantages of the proposed method,
we manually annotate the poor samples discarded by ATRW (excluding some extreme cases)
to build a more challenging dataset, which is called Amur.

Synthetic Animal. The synthetic dataset in [I8] consists of images of elephant, horse,
hound, sheep and tiger. In this dataset, animal textures and backgrounds are randomly syn-
thesized using COCO dataset [T4]. For each animal species, 5,000 images are generated with
random texture and 5,000 images with the texture coming with the original CAD model. We
only use the tiger subset, denoted by SA-Tiger, in our experiments.

5.2 Evaluation Metrics

As in [25], we use the percentage of correctly localized keypoints (PCK) as the metric for
evaluation. For the ;j th sample in the test set of size N, PCK defines the predicted position
of the i th landmark j’; to be correct if it falls within a threshold of the ground-truth position
y;, that is, if

155 =351, < BD, ()

where D is the reference normalizer, namely, maximum side length of the image bounding
box for animals. The parameter 3 controls the threshold for correctness. f is set to 0.05 as
in [29].

The quality of animal data varies greatly, especially data collected in the wild. To investi-
gate the performance of the proposed method on different quality images, we divide images
into different quality levels. We use the PCK of initial pose as the quality threshold to divide
the test data. We empirically set three intervals: (0,45], (45,65] and (65,100].

5.3 Comparison with State of the Art

Existing animal pose estimation algorithms can be divided into two categories: full super-
vision and domain adaptation. In the experiments, we select the state-of-the-art (SOTA)
algorithms from these two categories for comparison. Fully supervised methods such as
ResNet [B] and HRNet [21], which perform well in human pose estimation, are also used
in animal pose estimation. ResNet [8] and HRNet [Z1] trained for tiger pose estimation
have been provided by MMPose [I'Z]. In addition, [T8] propose a novel Consistency Con-
strained Semi-Supervised Learning method (CC-SSL) to bridge the domain gap between
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Method | (0,45] | (45,65] [ (65,100] |

ResNet [E] 35.0 56.8 84.3
Ours 37.2 57.4 84.3
HRNet [21] 35.9 57.0 84.7
Ours 38.8 57.8 84.7
CC-SSL [IR] | 32.1 554 75.4
Ours 35.1 55.4 75.4
UDA [I2] 34.4 55.2 76.5
Ours 38.5 55.7 76.5

Table 2: Results on the Amur (%).

real and synthetic images. [IZ] design a multi-scale domain adaptation module for Unsuper-
vised Domain Adaptation (UDA) on animal pose estimation. For fair comparison, we retrain
CC-SSL [IX¥] and UDA [I2]. The training strategy is as follows: the source domain is the
Synthetic Animal [[[¥], which is the same as CC-SSL [[[8] and UDA [IZ2]; The training data
for the target domain is the training set in ATRW [I[3]. We evaluate the above algorithms
and the proposed method on the Amur dataset.

The results are shown in Table D. As can be seen, with the proposed method incorpo-
rated all the initial models have improvements on performance or are comparable to initial
results. For example, in the most challenging case (i.e., (0,45]), the proposed method out-
performs UDA [I7] on average with gains of 4.1%, thanks to that the 3D constraints can
provide effective prior knowledge to help the pose estimation. Meanwhile, for the cases
when the initial models work well (e.g., for images of high quality), the proposed method
maintains the accuracy of the models. This is because the proposed method aims to improve
the initial pose, and if the initial pose is already close to the true positions (i.e., in (65, 100]),
the proposed method will most probably keep the initial estimation unchanged. Generally,
this demonstrates the effectiveness of the proposed 3D constraints for 2D pose refinement,
especially in challenging cases.

5.4 Adding Noise to Ground Truth 2D Poses

Section B3 evaluates the effectiveness of the proposed method in refining the initial poses
obtained by SOTA pose estimation methods. The results show that better improvement is
achieved on the samples with larger initial errors (e.g., (0,45]). To further investigate its
effectiveness for samples in (0,45], we use the same method of adding noise as in [I6] to
corrupt the ground truth poses. These corrupted data are used to simulate the noisy initial
2D poses. The magnitude of the noise indicates the different degrees of deviation between
the initial 2D pose and the ground truth (GT). As in [[6], we estimate the scale s by finding
the maximal length of bounding box along x,y — axis. Then we sample zero mean Gaussian
noise with standard variance ¢ = 0% X s, where 8 are set to 5, 10 and 15. The PCK@0.05
of the proposed method at different Gaussian noises are shown in Table B. It can be seen that
the proposed 3D constraints have a large impact on the pose estimation. Specifically, gains of
3.2%, 4.6% and 2.1% are achieved over GT + N (0,5), GT + A (0,10) and GT + N (0,15),
respectively. The reason why the proposed method is less effective for samples with very
high noise levels might be that the initial poses do not lie in the reasonable distribution of
2D poses and cannot be reparable (See Fig. B).
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‘ Method ‘ Ear ‘ Nose ‘ Shoulder ‘ Front Paw ‘ Hip ‘ Knee ‘ Back Paw ‘ Tail ‘ Center ‘ Mean ‘
GT +N(0,5) | 39.7 | 38.0 38.5 39.7 39.5 | 38.6 39.3 39.7 | 394 39.2
Ours 41.5 | 46.3 35.6 39.6 327 | 45.3 42.3 47.1 | 56.3 42.4
GT +N(0,10) | 11.7 | 12.1 12.4 11.3 120 | 11.4 11.6 11.0 | 122 11.7
Ours 139 | 164 18.8 12.7 19.5 | 19.8 13.7 15.6 | 22.0 16.3
GT+N(0,15) | 5.8 5.3 5.4 5.2 5.4 53 53 5.7 5.3 5.4
Ours 6.3 6.3 9.3 5.7 109 | 8.2 6.2 74 9.8 7.5

Table 3: Results on the SA-Tiger adding Gaussian noise to ground truth 2D pose (%).

5.5 Different Scales of 3D Pose Dictionary

Since the number of basis is a very important factor in dictionary learning, we also evaluate
the impact of the number of 3D basis poses (i.e., K), on the proposed method for 2D pose
refinement. The proposed method with K of 64, 128 and 256 are evaluated on the (0,45] of
Amur, respectively. The results are summarized in Table B. As can be seen, in average, when
K is 128 the PCK@0.05 achieves the highest values, namely 38.8% on Amur. So we set K
to 128 in the proposed method by default.

‘ Method ‘ Ear ‘ Nose ‘ Shoulder ‘ Front Paw ‘ Hip ‘ Knee ‘ Back Paw ‘ Tail ‘ Center ‘ Mean ‘
Ours (K =64) | 56.8 | 61.1 19.8 342 29.2 | 25.7 28.5 30.0 | 545 38.1
Ours (K =128) | 55.8 | 59.3 22.8 36.3 29.2 | 284 26.3 30.0 | 545 38.8
Ours (K =256) | 55.8 | 61.1 19.9 36.3 25.0 | 23.1 26.3 30.0 | 545 377

Table 4: Results of the proposed method with different K on the (0,45] of Amur (%).

5.6 Qualitative Results

As shown in Fig. M and Fig. B, in the poor quality in-the-wild animal images caused by occlu-
sion, complex background and uncontrollable illumination, the proposed method can effec-
tively improve the pose estimation accuracy. In addition, we also show the failure samples
(See Fig. B). In these cases, the initial poses completely violate the reasonable distribution of
2D poses, leading to irreparable errors. Moreover, the training data for 3D pose dictionary
learning is synthetic. If more real data can be used for training, the pose dictionary that is
more robust to noise can be obtained. We will consider these in future work.

6 Conclusion

In this paper, we present a method to refine 2D animal pose with 3D constraints. The 3D con-
straints are constructed with synthetic 3D poses and encoded in the 3D pose dictionary using
sparse dictionary learning. Extensive experiments are conducted to evaluate the proposed
method. Experimental results show that the proposed method is effective in improving 2D
animal pose estimation, especially in challenging cases. In addition, we build a 3D animal
pose dataset using synthetic methods, and collect and manually annotate a 2D pose dataset.
We believe that the data collected and the proposed method will help advance the field.
Limitations and Future Work. It is worth emphasizing that the proposed method works
as a plug-in post-processing module and can be attached to existing animal pose estimation
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(b)

Figure 4: Examples with poses successfully refined by the proposed method. Ground truth,
initial and refined poses are shown in red, green and colors, respectively.

(b)

Figure 5: Examples with poses unsuccessfully refined by the proposed method. Ground
truth, initial and refined poses are shown in red, green and colors, respectively.

methods. Inspired by [, 20, 23, P4, P&], we employ a dictionary to encode 3D prior con-
straints to refine the initial animal pose. To address the scarcity of 3D animal data, we use
synthetic data for dictionary learning. However, if there is enough real data to learn the 3D
pose dictionary, this is a way to further improve the refinement accuracy. Moreover, the
dictionary is encoded prior knowledge for specific classes of animals. It can be generalized
between animal species with similar shapes, e.g., cats and tigers, but not between arbitrary
animals. Therefore, obtaining a more diverse dictionary might be a potential way to further
improve the refinement performance.
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