
Ø Animal pose has many potential applications in various fields. 
Ø It is impractical to bring wild animals into a laboratory environment 

for scanning in specific poses.
Ø However, uncontrollable illumination, complex backgrounds and 

random occlusions in in-the-wild animal images often lead to large 
errors in pose estimation. 

Ø To reduce the pose estimation errors, we propose a method for 
refining the initial animal pose with 3D prior constraints. 

Ø We construct a 3D animal pose dataset using synthetic methods for 
3D pose dictionary learning. 

Ø We collect and manually annotate images to build a 2D animal 
pose dataset for algorithm evaluation.

Ø This dataset contains more than 400 samples.

Figure 1: (a) are examples of keypoints in the dataset Cat. Red dots indicate the 
keypoints. (b) The joints defined in ATRW[1].

Figure 2: Overview.

Ø we use dictionary learning to find a good basis for 3D poses.

�� denotes a 3D pose; �� is the basis pose; ��,� represents the �th coefficient.

Ø we use the following objective function to estimate a latent 3D 
pose.

Ø we can finally obtain our refined 2D pose �.

Figure 3: Examples. Ground truth, initial and refined poses are shown in red, green 
and yellow colors, respectively. 

Ø It is worth emphasizing that the proposed method works as a plug-
in post-processing module and can be attached to existing animal 
pose estimation.

Ø We employ a dictionary to encode 3D prior constraints to refine the 
initial animal pose.

Ø To address the scarcity of 3D animal data, we use synthetic data 
for dictionary learning.
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