

Introduction

Motivation

- \succ Animal pose has many potential applications in various fields.
- \succ It is impractical to bring wild animals into a laboratory environment for scanning in specific poses.
- However, uncontrollable illumination, complex backgrounds and random occlusions in in-the-wild animal images often lead to large errors in pose estimation.

Objective

- > To reduce the pose estimation errors, we propose a method for refining the initial animal pose with 3D prior constraints.
- > We construct a 3D animal pose dataset using synthetic methods for 3D pose dictionary learning.
- We collect and manually annotate images to build a 2D animal pose dataset for algorithm evaluation.

Dataset

3D Pose Dataset

 \succ This dataset contains more than 400 samples.

Figure 1: (a) are examples of keypoints in the dataset Cat. Red dots indicate the keypoints. (b) The joints defined in ATRW[1].

References. [1] Li S, Li J, Tang H, et al. Atrw: A benchmark for amur tiger reidentification in the wild. In Proc. Multimedia, 2020. [2] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. In Proc. CVPR, 2016.

Animal Pose Refinement in 2D Images with 3D Constraints Xiaowei Dai¹, Shuiwang Li², Qijun Zhao^{1,3}, Hongyu Yang^{1,3} ¹National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University ²College of Information Science and Engineering, Guilin University of Technology ³College of Computer Science, Sichuan University

3D Pose Dictionary Learning

 \succ we use dictionary learning to find a good basis for 3D poses.

$$\min_{B,C} \sum_{n=1}^{N} \frac{1}{2} \left\| S_n - \sum_{k=1}^{K} C_{n,k} B_k \right\|_F^2 + \lambda \left\| C \right\|_1$$

s.t. $C_{n,k} \ge 0, \quad \left\| B_k \right\|_F \le 1, \quad \forall_k \in [1,K], \quad n$

 S_n denotes a 3D pose; B_k is the basis pose; $C_{n,k}$ represents the kth coefficient.

2D Pose Refinement with 3D Constraints

 \succ we use the following objective function to estimate a latent 3D pose.

$$\min_{M_{i,...,}M_{K}} \frac{1}{2} \left\| W - \sum_{k=1}^{K} M_{k} B_{k} \right\|_{F}^{2} + \alpha \sum_{k=1}^{K} \| M_{k} \|_{F}^{2}$$

 \succ we can finally obtain our refined 2D pose \widetilde{W} . $\widetilde{W} = \Pi S = \Pi \sum_{k=1}^{n} c_k R_k B_k = \sum_{k=1}^{n} M_k B_k$

Experiments

Comparison with State of the Art

Method	(0, 45]	(45,65]	(65,100]
ResNet [2]	35.0	56.8	84.3
Ours	37.2	57.4	84.3
HRNet [3]	35.9	57.0	84.7
Ours	38.8	57.8	84.7
CC-SSL [4]	32.1	55.4	75.4
Ours	35.1	55.4	75.4
UDA [5]	34.4	55.2	76.5
Ours	38.5	55.7	76.5

Qualitative Results

Figure 3: Examples. Ground truth, initial and refined poses are shown in red, green and yellow colors, respectively.

Conclusion

- \succ It is worth emphasizing that the proposed method works as a plugin post-processing module and can be attached to existing animal pose estimation.
- > We employ a dictionary to encode 3D prior constraints to refine the initial animal pose.
- > To address the scarcity of 3D animal data, we use synthetic data for dictionary learning.

References. [3] Sun, Ke, et al. Deep high-resolution representation learning for human pose estimation. In Proc. CVPR, 2019.

[4] Mu, Jiteng, et al. Learning from synthetic animals. In Proc. CVPR, 2020. [5] C. Li and G. H. Lee. From synthetic to real: Unsupervised domain adaptation for animal pose estimation. In Proc. CVPR, 2021.

