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» We construct a 3D animal pose dataset using synthetic methods for
3D pose dictionary learning.

» We collect and manually annotate images to build a 2D animal
pose dataset for algorithm evaluation.
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Figure 2: Overview.

Dataset 3D Pose Dictionary Learning
3D Pose Dataset » we use dictionary learning to find a good b2aS|s for 3D poses.
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» It is worth emphasizing that the proposed method works as a plug-
In post-processing module and can be attached to existing animal
pose estimation.

2D Pose Refinement with 3D Constraints
» we use the following objective function to estimate a latent 3D

POSE. ) - » \We employ a dictionary to encode 3D prior constraints to refine the
| initial animal pose
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for dictionary learning.

Figure 1: (a) are examples of keypoints in the dataset Cat. Red dots indicate the
keypoints. (b) The joints defined in ATRWI[1].

> we can finally obtain our refined 2D pose
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