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METHODOLOGY

Multimodal sensor data is used to derive raw or extracted features, and feature-wise CMPs are created. Feature-stacked CMP distance matrices are converted to evolving time context graphs — the central node
of each star graph is a time context and the outer nodes represent previous time contexts. Outer node features are the feature-wise distances to the central node. We apply graph learning to obtain embeddings,
and use these to evaluate anomalousness of a time context. We use a single-layer self-supervised GCN and also evaluate existing graph outlier scoring algorithms on top of context graphs: MLP AE, DOMINANT,
One-class GNN, and GCN AE.

Time t:c:nte:-:ts Training pair example 1

Raw or P Objective = Maintain graph distance
extracted 7 7. -: t-3 I“. Hidden layer
features —— [ t-2 LS
= yi] A
T ' GCN | t-1

: ] t

I t+1

Objective:
pairwise
Euclidean
distance

Feature-stacked CMP

Graph embeddings

Graph snapshots across time contexts

Graph outlier
scoring algorithms

| t-3 CIOE] 3 | - | \

t-2 f 1 t-2 E— R * | Graph
I

) | Anomalous . 2 ’ embedding
1 -1 - " | o ‘ Single-layer

t I I - t i ) [ [ ] .tl me “II { ‘k"‘u‘h‘ - G C N
I

t+1 t+1 contexts

DOMINANT, GCMAE MLPAE, OCGMNM

Graph embeddings Successive embedding deltas: Sliding window moving average thresholding
Cosine difference

Graph representation learning pipeline Self-supervised GCN Training

GRAPH OUTLIER ALGORITHMS
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EXPERIMENTS AND RESULTS CONCLUSIONS

* Experiments were conducted on remote health monitoring datasets collected from the homes of 65 Representation learning on top of graph-enhanced CMP outperformed multidimensional CMP and
people living with dementia from the Minder research study [8] for Agitation and Fall events over a total SOTA methods for anomaly detection

of 18,710 days with 183 labelled adverse events (anomalies) Creating time context graphs makes for a feature-agnostic, scalable approach. Graph structure
* Hyperparameters - graph pairs, number of layers, dropout rate, training epochs, embedding dimension does not change as new features are added
- were tuned on a separate dataset of 15 patients with urinary tract infection (UTI) Cross-feature correlations are addressed

* Benchmark methods included Angle-based outlier detection, Copula-based outlier detection, The modular pipeline allows for flexibility in graph construction and self-supervision mechanisms
Lightweight online detector of anomalies and multidimensional CMP (see [3]) Computer vision applications include using CMPs to represent temporal sequences of visual
- Evaluated using Recall, Alerts raised, Patients with > x% recall (to determine generalisability) features with GNNs detecting visual anomalies in the feature stream, and classification of objects
across temporal sequences
Recall% Alert rate% Patient validity

DOMINANT 73.62 . FUTURE WORK

GNN 73.97
» Use of sparse graphs to amplify anomalousness
GCN AE 67.38  Contrastive learning for self-supervision
MLP AE 60.57 _ » Addressing “cold-start” problem by pre-training self-supervised GCN using similar time context
graphs from different subjects and domains
Benchmark (see [3]) 71.96 - » End-to-end learning — feature extraction to representation learning

Agitation cohort results
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