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Abstract

Unmanned aerial vehicle (UAV)-based tracking has wide perspective applications,
however, due to the limitations of computing resources, battery capacity, and maximum
load of UAVs, efficiency seems more thorny and imperative as an issue than precision
in UAV tracking, which explains why discriminative correlation filters (DCF)- instead
of deep learning (DL)- based trackers are usually preferred in this field, as the for-
mer are known for high efficiency, whereas, the latter hardly achieve real-time track-
ing on a single CPU. However, without deep representation learning the precision of
DCF-based trackers is extremely limited. This paper dedicates to boost the efficiency of
DL-based trackers for UAV tracking by presenting a global filter pruning and proposes
a self-attention module, which seeks to learn backbone features that highlight meaning-
ful visual inter-dependencies, in order to combat the precision drop, and, importantly,
to avoid the arduous process of determining layer-wise pruning ratios in the original
ranked-based filter pruning method. Remarkably, self-attention is utilized here to guide
the training without introducing any extra computational burden into the inference phase.
Extensive experiments on four UAV benchmarks show that the proposed tracker strikes
a remarkable balance between efficiency and precision and achieves state-of-the-art per-
formance in UAV tracking.

1 Introduction
Unmanned aerial vehicle (UAV)-based tracking has wide perspective applications in nav-
igation, aviation, transportation, agriculture, public security and many other fields, and is
developing rapidly recently [5, 28, 30, 46]. Undoubtedly, their wide and mature applications
rely heavily on the tacking precision and efficiency. However, UAV tracking faces more
severe challenges compared with visual tracking in general scenes [26, 28, 30, 31]. On the
one hand, great challenges are posed to the precision of the UAV tracking algorithms by
e.g. extreme viewing angle, motion blur, scale changes, and severe occlusion; on the other
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hand, huge challenges are raised to their efficiency by e.g. limited computing resources, bat-
tery capacity limitations, low power consumption requirements, and UAV’s maximum load
[26, 31, 32]. Nevertheless, at the current technical level, efficiency seems more thorny and
imperative in UAV tracking, which explains why discriminative correlation filters (DCF)-
instead of deep learning (DL)- based trackers are usually preferred in the UAV tracking
community, since the former are known for high efficiency, whereas, the latter, especially
state-of-the-art ones, hardly achieve real-time tracking on a single CPU despite their rela-
tively higher precision, hindering their deployment on UAVs to a great extent. Although
their efficiency is more favourable, without the great power of deep representation learning
the precision of DCF-based trackers is so extremely limited that they hardly remain robust-
ness under very challenging conditions. Very recently, in [5] an efficient and effective deep
tracker for UAV tracking was proposed, uses a lightweight backbone for efficiency and a
hierarchical feature transformer to combine features from shallow and deep layers for robust
representation learning. Although it has obtained a good balance between efficiency and
precision, and demonstrated remarkable performance in UAV tracking, this tracker is not yet
real-time on a single CPU. But importantly, it suggests that better balance between efficiency
and precision may be more easily achieved by effective and lightweight DL-based trackers
than fiddling with DCF-based ones, which motivates us to explore implementing real-time
yet effective DL-based trackers with model compression techniques.

Model compression aims to reduce the cost of large models by representing the model
in a more efficient format with minimal impact on its performance, which are usually used
to deploy deep networks in resource-constrained and low-power edge devices [8]. How-
ever, the selection of DL tracker and compression method makes a huge difference to our
purpose of implementing real-time yet effective DL-based trackers. Considering DL-based
trackers, SiamFC [1] is a very efficient DL-based tracker, based upon which SiamFC++ [47]
demonstrates state-of-the-art performance in both precision and speed with the proposed re-
gression branch and center-ness branch, which is chosen as the baseline DL-based tracker for
compression. Regarding model compression methods, the rank-based filter pruning method
proposed in [33] is straightforward yet efficient in training as no cumbersome retraining
is required. But there is a shortcoming: layer-wise pruning ratios are difficult and time-
consuming to decide. Adopting a global pruning ratio is a simple solution to this problem,
which, however, may compromise the precision to a great extent. In view of recent advances
in Natural Language Processing (NLP) and vision tasks (such as the Transformer architec-
ture [37], BERT [13] and ViT [14]) are largely attributed to the attention mechanism, and,
particularly, self-attention has shown great power in image classification and object detec-
tion tasks thanks to its capacity to learn meaningful visual inter-dependencies, in this paper,
we use the self-attention mechanism to mitigate accuracy loss when pruning SiamFC++ [47]
with a global pruning ratio. The proposed self-attention module seeks to learn backbone
features that highlight meaningful visual inter-dependencies through guiding the finetuning
process. We name the proposed method ’PS-SiamFC++’, since our tracker is obtained by
applying pruning with self-attention on SiamFC++. Our contributions can be summarized as
follows:

• Our work provides a fresh perspective to improve efficiency and precision of UAV
tracking by developing DL-based trackers with filter pruning method, which has not
been well explored before.

• We proposed a method of global filter pruning with self-attention for real-time UAV
tracking, with which the proposed PS-SimaFC++ can globally compress the baseline
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SiamFC++ to about 60% of its original model size, meanwhile maintaining and even
significantly boosting precision simultaneously.

• We evaluate our PS-SiamFC++ on four public UAV benchmarks, i.e., UAV123@10fps
[35], DTB70 [29], UAVDT [15] and VisDrone2018 [45]. Experimental results show
that the proposed PS-SiamFC++ achieves state-of-the-art performance.

2 Related Works

2.1 Visual Tracking
Modern trackers are classified as DCF-based trackers or DL-based trackers. Using DCF for
visual tracking starts with the minimum output sum of squared error (MOSSE) filter [4]. Af-
terwards, great progresses have been witnessed [11, 17, 20, 21, 24, 25, 27, 51]. DCF-based
trackers usually adopt handcrafted features and can be calculated in the Fourier domain,
which leads to competitive performance with high efficiencies. Since efficiency is a critical
aspect in UAV tracking, DCF-based trackers, therefore, dominate the UAV tracking commu-
nity currently. However, because of the restricted representation capability of handcrafted
features, DCF-based trackers frequently fail to retain robustness in complex situations. Deep
learning for visual tracking has shown to be quite effective in recent years, dramatically
improving tracking precision and robustness. SiamFC [1] employed the Siamese network
to quantify the similarity between the target and search pictures, making it one of the first
attempts to consider visual tracking as a generic similarity-learning issue. Many DL-based
trackers using Siamese topologies have been presented since then. Recently, SiamRPN++
[23] and SiamBAN [7] use deeper architectures to further improve tracking precision. How-
ever, their tracking efficiency has dropped significantly. In contrast, SiamFC++ [47] is a
simple yet powerful framework as it has a lightweight backbone and a quality assessment
branch that is effective for enhancing performance. Unfortunately, despite its excellent GPU
speed, its CPU speed appears to be too slow to fulfill strict real-time requirements (i.e., with
a speed of ≫ 30 FPS). In this work, we attempt to increase the efficiency of SiamFC++ while
keeping as much precision as possible for UAV tracking.

2.2 Filter Pruning
Pruning is a common technique for compressing neural networks, which are classified as
weight pruning and filter pruning. The former usually removes neurons or weights, but
its acceleration on general-purpose hardware is hard to achieve. [3]. While filter pruning
removes the entire filters or channels, it is much easier to achieve considerable speed-up
[33]. The pruning ratio determines how many weights to eliminate, and it is generally set-
tled in one of two methods. The first is a specified global ratio or a series of layer-wise
ratios. The second option is to alter the pruning ratio indirectly, for example by employing a
regularization-based pruning approach. However, the second method necessitates consider-
able technical modifications to attain specific ratios [40]. The pruning criterion determines
which weights should be pruned. For filter pruning, Frobenius norm or sparsity of the filter
response, and the scaling factor of the Batch Normalization layer are commonly used criteria
[41]. Last but not least, to specify how the sparsity of the network changes from zero to the
target number, i.e., pruning schedule, there are two typical choices [41, 44]: (1) a single step
(one-shot), then finetune, (2) progressive pruning and training are interleaved. Although the
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progressive approach is better to the one-shot approach since it provides for more time for
training, the latter is more efficient and can alleviate the effort of developing complex train-
ing strategies. By and large, filter pruning so far remains an open problem. Recently, Lin
et al. [33] proposed an effective and efficient filter pruning approach. They scheduled the
pruning in a one-shot manner, using the rank of the feature map in each layer as the pruning
criterion, which simplifies the process of pruning to a great extent. However, this approach
requires a laborious and time-consuming process to determine the layer-wise pruning ratios.
We propose to use a global pruning ratio to get around this issue. Furthermore, to prevent a
potential precise decrease, we utilize self-attention to guide the fintuning process seeking to
learn backbone features that highlight meaningful visual inter-dependencies.

2.3 Self-Attention in Vision
Attention mechanism is an attempt to mimic the human brain action of selectively concen-
trating on a few relevant things, while ignoring others in deep neural networks [37]. As a
special case, self-attention at the outset is the primary workhorse in NLP as it is an effective
and computationally efficient mechanism for capturing global interactions between words
in a sentence. But self-attention has properties, such as content-based interactions, ability
to capture long-range dependencies, flexibility to handle multiple types of data and etc, that
make it a good fit for vision tasks as well [38]. For instance, Wang et al. [43] presented non-
local operations for capturing long-range dependencies for video understanding, Fu et al.
[16] proposed DANet for semantic segmentation, Zhang et al. [50] demonstrated the effec-
tiveness of the self-attention in image generation, and Zhao et al. [53] explored two forms of
self-attention for image recognition. The usefulness of self-attention in many NLP and com-
puter vision tasks has already gotten the extensive identification. Although self-attention has
spawned the rise of so many recent breakthroughs in NLP and computer vision, including the
Transformer architecture [37], BERT [13] and ViT [14], they come at a cost considering the
computing and memory overheads involved. In view of this and our goal of real-time DL-
based trackers, in this paper we avoid using self-attention in inference, but instead exploit
it to guide our tracker in the training phase, which enables us to boosts tracking precision
without introducing additional computation overhead in the inference phase.

3 Proposed Method

3.1 PS-SiamFC++ Overview
The overview of the proposed PS-SiamFC++ is shown in Fig. 1. It consists of a backbone,
a neck, a head network, and a self-attention module. The target patch Z and the search
patch X are the inputs for the template branch and the search branch, respectively. The
shared backbone network of the two branches is denoted by φ(·). The cross-correlation
operation is conducted to the output backbone features of the two branches before they are
passed to subsequent classification and regression tasks. The features produced by the cross-
correlation operation are formulated by:

fl(Z,X) = ψl(φ(Z))⋆ψl(φ(X)),ψl ∈ {ψcls,ψreg}, (1)

where ψcls(·) and ψreg(·) denote the layer that is specifically designed for the tasks of clas-
sification and regression, respectively. ⋆ represents the cross-correlation operation. The
classification branch predicts the category for each location, and its output is denoted by
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Figure 1: An illustration of the proposed PS-SiamFC++ method. The network structure is
inherited from that of SiamFC++.

Ocls
h×w×2; the regression branch is to compute the target bounding box at this location, and

its output is denoted by Oreg
h×w×4, where w and h are the width and height of the outputs,

respectively. More specific, Ocls
h×w×2(i, j, :) is a 2D vector to record foreground and back-

ground scores of the location (i, j), while Oreg
h×w×4(i, j, :) is a 4D vector that shows how far

the corresponding location is from the bounding box’s four sides. The purpose of the center-
ness branch is to evaluate classification qualities. Its output is denoted by Ocen

h×w×1, which is
finally used to reweight the classification scores. The self-attention module is exploited to
guide the finetuning process, which will be detailed in the following subsection.

3.2 Filter Pruning with Self-Attention
PS-SiamFC++ inherits the pipeline of SiamFC++ with the difference that the filters con-
sidered less important are pruned and a self-attention module is incorporated to guide the
finetuning process. Let’s first describe the rank-based filter pruning. We denote the i-th (1 ⩽
i ⩽ K) convolutional layer Ci of SiamFC++ by a set of 3-D filters WCi = {wi

1,w
i
2, ...,w

i
m} ∈

Rni×ni−1×ki×ki , where ni is the number of filters in Ci, ki denotes the kernel size, and the j-th
filter is wi

j ∈Rni−1×ki×ki . The filters’ output feature maps are denoted by OCi = {oi
1,o

i
2, ...,o

i
m}∈

Rni×g×hi×wi , where oi
j ∈ Rg×hi×wi is associated with wi

j, g is the number of input images, hi
and wi denote the height and width of the feature maps, respectively. The rank-based filter
pruning aims to minimize the following objective function:

min
δi, j

K

∑
i=1

ni

∑
j=1

δi, jEI∼P(I)[R(oi
j(I))], s.t

ni

∑
j=1

δi, j = ni
p, (2)

where I follows the P(I) distribution representing an input image, ni
p represents the number

of filters to be pruned in Ci. δi, j ∈ {0,1} indicates whether or not the filter is pruned, δi, j = 1
if it is, otherwise δi, j = 0. R(·) calculates a feature map’s rank as a measure of how rich its
information is. The expectation of the rank generated by a single filter is empirically proved
to be robust to the input images [33], by which Eq. (2) is approximated by

min
δi, j

K

∑
i=1

ni

∑
j=1

δi, j

g

∑
t=1

R(oi
j(It)), s.t

ni

∑
j=1

δi, j = ni
p, (3)

where t indexes the input images. Eq. (3) is readily minimized by pruning npi filters that
have the lowest average rank of feature maps.

After pruning the less important filters, the compressed network will be finetuned to opti-
mize the parameters for the compressed model. To make the finetuning more productive, we
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utilize the self-attention mechanism to draw dependencies between spatial features, seeking
to enhance significant parts while diminishing less informative parts of the features output
by the pruned backbone for our tracking task. How the self-attention module plays a part
is illustrated in Fig. 1. The backbone output in the template branch, denoted by fZ , will be
fed into a multi-head self-attention module to generate an enhanced feature representation
f ∗Z , which is used in turn to supervise fZ with the mean squared error (MSE) loss Lmse. The
self-attention module consists of a Multi-Head Self-Attention layer (refer to supplementary
material for its concrete structure). Intuitively, the attention mechanism describes a weighted
average of (sequence) elements with the weights dynamically computed based on an input
query and elements’ keys. In our implementation, fZ is encoded in a pixel-wise manner, i.e.,
the spatial coordinates of fZ index the tokens, and the query, key and value are initially the
same, for simplicity. Note that the output of the self-attention module is used for finetuning
only, the module plays no part in the inference phase.

We now formulate the losses for finetuning the PS-SiamFC++. Let (x0,y0) and (x1,y1)
denote the ground truth bounding box’s left-top and right-bottom coordinates, and (x,y)
denote the corresponding location of point (i, j), then the regression target t̂(i, j) = {t̂k

(i, j)}
3
k=0

of Oreg
h×w×4(i, j, :) is

t̂0
(i, j) = l̂ = x− x0, t̂1

(i, j) = t̂ = y− y0, t̂2
(i, j) = r̂ = x1 − x, t̂3

(i, j) = b̂ = y1 − y. (4)

The differences between Oreg
h×w×4(i, j, :) and the regression target is penalized by the loss

Lreg =
1

∑i, j I(t̂(i, j))
∑
i, j

I(t̂(i, j))LIOU (Oreg
(i, j,:), t̂(i, j)), (5)

where LIOU is the IOU loss as defined in [49], I(·) is the indicator function defined as follow

I(t̂(i, j)) =
{

1 i f t̂k
(i, j) > 0,k = 0,2,2,3

0 otherwise.
(6)

Denote Ocen
h×w×1(i, j), i.e., the centerness score at (i, j), by c(i, j) as follows,

c(i, j) = I(t̂(i, j))∗

√
min(l̂, r̂)
max(l̂, r̂)

× min(t̂, b̂)
max(t̂, b̂)

. (7)

The centerness loss is defined by

Lcen =
−1

∑i, j I(t̂(i, j))
∑

I(t̂(i, j))=1
c(i, j)∗ log(Ocen

h×w×1(i, j))+(1− c(i, j))∗ log(1−Ocen
h×w×1(i, j)). (8)

Finally, the overall loss for fintuning PS-SiamFC++ is:

L = Lcls +λ1Lreg +λ2Lcen +λ3Lmse( fZ , f ∗Z ), (9)

where Lcls is the cross-entropy loss for classification, λ1, λ2, and λ3 are predefined constants.

3.3 Pruning Schedule
The pipeline of pruning is: First, calculate the average rank of the feature map of any filter
in each layer to obtain the rank sets {Ri}K

i=1 = {{ri
1,r

i
2, ...,r

i
ni
}}K

i=1. Second, each set Ri is
sorted in decreasing order, resulting in R̄i = {ri

si
1
,ri

si
2
, ...,ri

si
ni
}, where si

j denotes the index

of the j-th top value in Ri. Third, perform filter pruning with a predefined global pruning
ratio ρ , after which Ri turns to R̂i = {ri

si
1
,ri

si
2
, ...,ri

si
n̂i

}, n̂i = ni − np
i and incorporate the self-

attention module to obtain the PS-SiamFC++ model. Finally, PS-SiamFC++ is finetuned
after the remained filters are initialized with the original weights in the trained SiamFC++.
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Figure 2: Overall performance of ten hand-crafted based trackers and our PS-SiamFC++
on UAV123@10fps, DTB70, UAVDT and VisDrone2018. For evaluation, precision and
success rate for one-pass evaluation (OPE) are used. Precision at 20 pixels and area under
curve (AUC) are utilized for ranking, respectively.

4 Experiments

4.1 Experiment Settings

Our experiments are conducted on four challenging UAV benchmarks, i.e., UAV123@10fps
[35], DTB70 [29], UAVDT [15] and VisDrone2018 [45]. All evaluation experiments are
conducted on a PC (with i9-10850K processor (3.6GHz), 16GB RAM, and an NVIDIA
TitanX GPU) and on a tiny mini PC, i.e., Intel NUC (with an i5-1135G7 processor, 16GB
RAM). Our PS-SiamFC++ is set with a global pruning ratio of 0.4. Other settings for training
and inference follow SiamFC++ [47]. Code is available on: https://github.com/
PS-SiamFCpp/PS-SiamFCpp.

4.2 Comparison with DCF-based Trackers

Ten state-of-the-art trackers with handcrafted features are used for comparison, including
KCF [21], fDSST [9], Staple-CA [36], BACF [17], ECO-HC [10], MCCT-H [42], STRCF
[24], ARCF-HC [22], AutoTrack [30], and RACF [26]. Fig. 2 demonstrates the overall
performance of PS-SiamFC++ with the competing trackers on the four benchmarks. PS-
SiamFC++ outperformed all other trackers by a significant margin on three benchmarks,
namely UAV123@10fps, DTB70, and UAVDT. On the three benchmarks, in terms of pre-
cision1 and area under curve (AUC), PS-SiamFC++ exceeds the second tracker RACF by
(4.9%, 7.5%), (7.4%, 10.1%), and (3.2%, 7.5%), respectively. Although PS-SiamFC++ is
inferior to the first tracker RACF in precision (by 1.8%), we get the best AUC when com-
bined with RACF for VisDrone2018. It’s worth noting that the settings of are dataset specific
but ours are not. We evaluate the average FPS over the four benchmarks on the CPU of the
PC and the NUC, respectively. Table 1 shows the average precision and FPS produced by
different trackers. PS-SiamFC++ is the best real-time tracker (speed of >30FPS) on the PC
and the NUC and it beats all rival trackers in terms of precision. Specifically, PS-SiamFC++
achieves 79.1% in precision at a frame rate of 71.3 FPS and 62.4 FPS on the PC and the
NUC, respectively. Qualitative comparison can be found in the supplementary material.

1Unless otherwise specified, the precision metric in our experiment refers to distance precision at 20 pixels.
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Table 1: Comparision of average precision and speed (FPS) between PS-SiamFC++ and
hand-crafted based trackers on the four benchmarks. The reported FPSs are evaluated on a
single CPU. Red, blue and green respectively show the first, second and third places.

KCF
TPAMI 15

fDSST
CVPR 16

Staple-CA
CVPR 17

BACF
ICCV 17

ECO-HC
CVPR 17

MCCT-H
CVPR 18

STRCF
CVPR 18

ARCF-HC
ICCV 19

AutoTrack
CVPR 20

RACF
3DV 21

PS-SiamFC++
Ours

Precision 53.3 60.4 64.2 65.3 68.8 66.8 67.1 71.9 72.3 75.7 79.1
FPS (PC) 655.6 203.6 67.7 57.0 88.9 66.7 29.9 36.0 61.8 37.5 71.3

FPS (NUC) 572.1 177.6 59.4 50.1 77.8 58.4 26.3 31.2 54.2 32.9 62.4

Table 2: Precision and speed (FPS) (evaluated on a single GPU) comparison between PS-
SiamFC++ and deep-based trackers on UAVDT [15].

SiamR-CNN
CVPR 20

D3S
CVPR 20

PrDimp18
CVPR 20

KYS
ECCV 20

SiamGAT
CVPR 21

LightTrank
CVPR 21

TransT
CVPR 21

HiFT
ICCV 21

SOAT
ICCV 21

AutoMatch
ICCV 21

PS-SiamFC++
Ours

Precision 66.5 72.2 73.2 79.8 76.4 80.4 82.6 65.2 82.1 82.1 80.5
FPS (GPU) 7.2 44.6 48.5 30.2 74.8 84.8 42.1 135.3 29.4 50.4 291.9

In Fig. 3, we compare our method’s qualitative tracking results to four top CPU-based
trackers. As can be seen, when the objects are subjected to substantial deformations (i.e.,
BMX5), pose changes (i.e., truck1 and S0309), and partial occlusion (i.e., uav0000294
00000 s), the four CPU-based trackers eventually fail to accurately track the objects. How-
ever, thanks to the strong deep representation learning, our PS-SiamFC++ performs better
and is visually more pleasing. It implies that building more efficient DL-based trackers,
for example, by model compression, might be more beneficial in improving UAV tracking
precision.

4.3 Comparison with DL-based Trackers
Ten state-of-the-art DL-based trackers are also compared with the proposed PS-SiamFC++,
including PrDiMP18 [12], SiamR-CNN [39], D3S [34], KYS [2], SiamGAT [19], Light-
Track [48], TransT [6], HiFT [5], SOAT [54], and AutoMatch [52]. Table 2 displays the
FPSs and precisions of the trackers on UAVDT. As is shown, although PS-SiamFC++ (prun-
ing ratio ρ = 0.4) is not as accurate as TransT, SOAT, AutoMatch and LightTrank, the gap
is not more than 2.1% . Moreover, PS-SiamFC++ has a GPU performance about 7 times
that of the first tracker TransT and 10 times that of the second tracker SOAT. PS-SiamFC++,
in particular, achieves a precision of 80.5 percent and a GPU performance of 291.9 FPS.
It achieves a fantastic balance between precision and efficiency when compared to the first
tracker TransT, which achieves 82.6 percent precision and 42.1 FPS GPU speed (i.e., speed).

4.4 Ablation Study
Effect of pruning with self-attention: We integrate the proposed method into two base-
line trackers, i.e., SiamCAR [18] and SiamFC++, and evaluate their performance with and
without the proposed components (i.e., filter pruning and self-attention) on the four bench-
marks. Table 3 shows the precisions and speeds evaluated on the PC. As can be seen, when
applying filter pruning with a global pruning ratio of 0.4, resulting in P-SiamCAR and P-
SiamFC++, the model size of both baselines are reduced to 60.0% of the original size, i.e.,
5.1M and 5.8M, respectively. Their speeds are thus increase significantly. Specifically, from
40.7 FPS to 79.4 FPS and from 36.5 FPS to 71.3 FPS, respectively. However, all their preci-
sions decrease, except the ones of SiamFC++ on UAVDT and VisDrone2018. This suggests
that filter pruning, especially with a global pruning ratio, can either improve or decrease
the precision of the model to be compressed, which depends on both the model itself and
the dataset for evaluation. Remarkably, when the self-attention component is integrated into
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Figure 3: Qualitative evaluation on 4 sequences from UAV123@10fps, DTB70, UAVDT
and VisDrone2018 (i.e. truck1, BMX5, S0309 and uav0000294_00000_s), respectively. The
results of different methods have been shown with different colors.

Table 3: Comparison of the proposed PS-SiamFC++ tracker with two baseline trackers in
terms of model size (Parameters), precision (DP), and tracking speed (FPS) on the PC CPU.

Methods Parameters Pruning Self-attention UAV123@10fps DTB70 UAVDT VisDrone2018 Avg. Precision Avg. FPS (CPU)
SiamCAR [18] 8.5M 73.7 76.6 76.1 80.3 76.7 40.7

P-SiamCAR 5.1M ✓ 70.9 68.2 72.7 74.6 71.6 79.4
PS-SiamCAR 5.1M ✓ ✓ 71.0 73.2 77.1 75.8 74.1 79.3

SiamFC++ [47] 9.7M 72.8 80.5 76.2 72.5 75.5 36.5
P-SiamFC++ 5.8M ✓ 71.9 79.5 78.8 79.3 77.4 71.3

PS-SiamFC++ 5.8M ✓ ✓ 74.3 79.9 80.5 81.6 79.1 71.1

P-SiamCAR and P-SiamFC++, resulting in PS-SiamCAR and PS-SiamFC++, all the preci-
sions of both compressed models are improved. For example, the precisions of P-SiamCAR
on DTB70 and UAVDT are raised by 5.0% and 4.4% and the precisions of P-SiamFC++
on UAV123@10fps and VisDrone2018 are improved by 2.4% and 2.3%, respectively. In
average, PS-SiamCAR and PS-SiamFC++ achieve an improvement of 2.5% and 1.7% in
precision over P-SiamCAR and P-SiamFC++, respectively. Note that speeds of the models
with and without the self-attention component are very close since the self-attention impacts
the training only but not the inference of the model. These results justify the effectiveness
of the proposed method, which can be attributed to the effectiveness of filter pruning for
improving efficiency and the effectiveness of self-attention in highlighting relevant visual
inter-dependencies thus providing more effective feature representations for tracking.
Impact of the global pruning ratio: To see how the global pruning ratio affects the fi-
nal precision, S-SiamFC++ was trained and evaluated with different global pruning ratios.
For further comparison, it was also trained and evaluated without the proposed self-attention
module (i.e., P-SiamFC++). The global ratio ρ ranges from 0.1 to 0.8. Note that the higher
the ratio, the more filters will be removed. Table 4 shows the precisions of PS-SiamFC++
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Table 4: Illustration of how the precision on DTB70 of PS-SiamFC++ varies with the global
pruning ratio, with or without the self-attention module. The precisions that have been im-
proved by the self-attention component are marked in bold.

ρ
UAV123@10fps DTB70 UAVDT VisDrone2018

w/o w/ w/o w/ w/o w/ w/o w/

0.1 70.8 72.2 79.6 79.4 81.4 81.3 79.6 83.1
0.2 71.6 72.3 80.0 80.1 76.9 77.2 80.2 77.7
0.3 71.3 72.4 81.0 81.5 83.9 80.3 75.6 79.3
0.4 71.9 74.3 79.5 79.9 78.8 80.5 79.3 81.6
0.5 71.1 69.2 77.6 79.2 77.5 78.0 72.7 76.4
0.6 68.7 69.2 78.6 77.1 76.6 78.3 75.2 76.9
0.7 69.1 66.0 77.9 74.9 77.8 80.7 76.7 79.4
0.8 65.2 66.0 76.4 70.1 74.6 77.0 71.8 74.9

with and without the self-attention module with respect to the global pruning ratio. As can
be seen, the highest precisions are primarily reached at ρ less than 0.5, which is consistent
with our expectation for filter pruning techniques. Remarkably, incorporating the proposed
self-attention improves most precisions. On UAV123@10fps and UAVDT, for example, six
out of eight precisions are improved, and on VisDrone2018 seven out of eight precisions is
raised. This allows us to maintain highly favorable precisions with larger pruning ratios, par-
ticularly when the global prunning ratio is set to the default value of 0.4, where the increases
in precision are 2.4%, 0.4%, 1.7%, and 2.3%, on UAV123@10fps, DTB70, UAVDT, and
VisDrone2018, respectively. This demonstrates the remarkable balance between prcision
and efficiency achieved by our method, justifying the its effectiveness for real-time UAV
tracking.

5 Conclusion
In this work, we present a method of global filter pruning with self-attention for real-time
UAV tracking and achieve state-of-the-art performance on four public UAV tracking bench-
marks. When using the proposed method to improve UAV tracking efficiency, experimental
results reveal that the proposed method is quite effective at maintaining and even improv-
ing precision. Surprisingly, the proposed PS-SiamFC++ not only outperforms the baseline
SiamFC++ in terms of efficiency (PS-SiamFC++ can run at and more than 62 FPS on a single
CPU of a mini PC, i.e., Intel NUC), but it also outperforms the baseline in terms of precision
on UAVDT and VisDrone2018, well combating the adverse effects of filter pruning.
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