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Abstract

Unmanned aerial vehicle (UAV)-based tracking has wide perspective applications,
however, due to the limitations of computing resources, battery capacity, and maximum
load of UAVs, efficiency seems more thorny and imperative as an issue than precision
in UAV tracking, which explains why discriminative correlation filters (DCF)- instead
of deep learning (DL)- based trackers are usually preferred in this field, as the for-
mer are known for high efficiency, whereas, the latter hardly achieve real-time track-
ing on a single CPU. However, without deep representation learning the precision of
DCF-based trackers is extremely limited. This paper dedicates to boost the efficiency of
DL-based trackers for UAV tracking by presenting a global filter pruning and proposes
a self-attention module, which seeks to learn backbone features that highlight meaning-
ful visual inter-dependencies, in order to combat the precision drop, and, importantly,
to avoid the arduous process of determining layer-wise pruning ratios in the original
ranked-based filter pruning method. Remarkably, self-attention is utilized here to guide
the training without introducing any extra computational burden into the inference phase.
Extensive experiments on four UAV benchmarks show that the proposed tracker strikes
a remarkable balance between efficiency and precision and achieves state-of-the-art per-
formance in UAV tracking.

1 Introduction
Unmanned aerial vehicle (UAV)-based tracking has wide perspective applications in nav-
igation, aviation, transportation, agriculture, public security and many other fields, and is
developing rapidly recently [5, 28, 30, 46]. Undoubtedly, their wide and mature applications
rely heavily on the tacking precision and efficiency. However, UAV tracking faces more
severe challenges compared with visual tracking in general scenes [26, 28, 30, 31]. On the
one hand, great challenges are posed to the precision of the UAV tracking algorithms by
e.g. extreme viewing angle, motion blur, scale changes, and severe occlusion; on the other
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hand, huge challenges are raised to their efficiency by e.g. limited computing resources, bat-
tery capacity limitations, low power consumption requirements, and UAV’s maximum load
[26, 31, 32]. Nevertheless, at the current technical level, efficiency seems more thorny and
imperative in UAV tracking, which explains why discriminative correlation filters (DCF)-
instead of deep learning (DL)- based trackers are usually preferred in the UAV tracking
community, since the former are known for high efficiency, whereas, the latter, especially
state-of-the-art ones, hardly achieve real-time tracking on a single CPU despite their rela-
tively higher precision, hindering their deployment on UAVs to a great extent. Although
their efficiency is more favourable, without the great power of deep representation learning
the precision of DCF-based trackers is so extremely limited that they hardly remain robust-
ness under very challenging conditions. Very recently, in [5] an efficient and effective deep
tracker for UAV tracking was proposed, uses a lightweight backbone for efficiency and a
hierarchical feature transformer to combine features from shallow and deep layers for robust
representation learning. Although it has obtained a good balance between efficiency and
precision, and demonstrated remarkable performance in UAV tracking, this tracker is not yet
real-time on a single CPU. But importantly, it suggests that better balance between efficiency
and precision may be more easily achieved by effective and lightweight DL-based trackers
than fiddling with DCF-based ones, which motivates us to explore implementing real-time
yet effective DL-based trackers with model compression techniques.

Model compression aims to reduce the cost of large models by representing the model
in a more efficient format with minimal impact on its performance, which are usually used
to deploy deep networks in resource-constrained and low-power edge devices [8]. How-
ever, the selection of DL tracker and compression method makes a huge difference to our
purpose of implementing real-time yet effective DL-based trackers. Considering DL-based
trackers, SiamFC [1] is a very efficient DL-based tracker, based upon which SiamFC++ [47]
demonstrates state-of-the-art performance in both precision and speed with the proposed re-
gression branch and center-ness branch, which is chosen as the baseline DL-based tracker for
compression. Regarding model compression methods, the rank-based filter pruning method
proposed in [33] is straightforward yet efficient in training as no cumbersome retraining
is required. But there is a shortcoming: layer-wise pruning ratios are difficult and time-
consuming to decide. Adopting a global pruning ratio is a simple solution to this problem,
which, however, may compromise the precision to a great extent. In view of recent advances
in Natural Language Processing (NLP) and vision tasks (such as the Transformer architec-
ture [37], BERT [13] and ViT [14]) are largely attributed to the attention mechanism, and,
particularly, self-attention has shown great power in image classification and object detec-
tion tasks thanks to its capacity to learn meaningful visual inter-dependencies, in this paper,
we use the self-attention mechanism to mitigate accuracy loss when pruning SiamFC++ [47]
with a global pruning ratio. The proposed self-attention module seeks to learn backbone
features that highlight meaningful visual inter-dependencies through guiding the finetuning
process. We name the proposed method ’PS-SiamFC++’, since our tracker is obtained by
applying pruning with self-attention on SiamFC++. Our contributions can be summarized as
follows:

• Our work provides a fresh perspective to improve efficiency and precision of UAV
tracking by developing DL-based trackers with filter pruning method, which has not
been well explored before.

• We proposed a method of global filter pruning with self-attention for real-time UAV
tracking, with which the proposed PS-SimaFC++ can globally compress the baseline
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SiamFC++ to about 60% of its original model size, meanwhile maintaining and even
signi�cantly boosting precision simultaneously.

• We evaluate our PS-SiamFC++ on four public UAV benchmarks, i.e., UAV123@10fps
[35], DTB70 [29], UAVDT [15] and VisDrone2018 [45]. Experimental results show
that the proposed PS-SiamFC++ achieves state-of-the-art performance.

2 Related Works

2.1 Visual Tracking

Modern trackers are classi�ed as DCF-based trackers or DL-based trackers. Using DCF for
visual tracking starts with the minimum output sum of squared error (MOSSE) �lter [4]. Af-
terwards, great progresses have been witnessed [11, 17, 20, 21, 24, 25, 27, 51]. DCF-based
trackers usually adopt handcrafted features and can be calculated in the Fourier domain,
which leads to competitive performance with high ef�ciencies. Since ef�ciency is a critical
aspect in UAV tracking, DCF-based trackers, therefore, dominate the UAV tracking commu-
nity currently. However, because of the restricted representation capability of handcrafted
features, DCF-based trackers frequently fail to retain robustness in complex situations. Deep
learning for visual tracking has shown to be quite effective in recent years, dramatically
improving tracking precision and robustness. SiamFC [1] employed the Siamese network
to quantify the similarity between the target and search pictures, making it one of the �rst
attempts to consider visual tracking as a generic similarity-learning issue. Many DL-based
trackers using Siamese topologies have been presented since then. Recently, SiamRPN++
[23] and SiamBAN [7] use deeper architectures to further improve tracking precision. How-
ever, their tracking ef�ciency has dropped signi�cantly. In contrast, SiamFC++ [47] is a
simple yet powerful framework as it has a lightweight backbone and a quality assessment
branch that is effective for enhancing performance. Unfortunately, despite its excellent GPU
speed, its CPU speed appears to be too slow to ful�ll strict real-time requirements (i.e., with
a speed of� 30 FPS). In this work, we attempt to increase the ef�ciency of SiamFC++ while
keeping as much precision as possible for UAV tracking.

2.2 Filter Pruning

Pruning is a common technique for compressing neural networks, which are classi�ed as
weight pruning and �lter pruning. The former usually removes neurons or weights, but
its acceleration on general-purpose hardware is hard to achieve. [3]. While �lter pruning
removes the entire �lters or channels, it is much easier to achieve considerable speed-up
[33]. The pruning ratio determines how many weights to eliminate, and it is generally set-
tled in one of two methods. The �rst is a speci�ed global ratio or a series of layer-wise
ratios. The second option is to alter the pruning ratio indirectly, for example by employing a
regularization-based pruning approach. However, the second method necessitates consider-
able technical modi�cations to attain speci�c ratios [40]. The pruning criterion determines
which weights should be pruned. For �lter pruning, Frobenius norm or sparsity of the �lter
response, and the scaling factor of the Batch Normalization layer are commonly used criteria
[41]. Last but not least, to specify how the sparsity of the network changes from zero to the
target number, i.e., pruning schedule, there are two typical choices [41, 44]: (1) a single step
(one-shot), then �netune, (2) progressive pruning and training are interleaved. Although the
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progressive approach is better to the one-shot approach since it provides for more time for
training, the latter is more ef�cient and can alleviate the effort of developing complex train-
ing strategies. By and large, �lter pruning so far remains an open problem. Recently, Lin
et al. [33] proposed an effective and ef�cient �lter pruning approach. They scheduled the
pruning in a one-shot manner, using the rank of the feature map in each layer as the pruning
criterion, which simpli�es the process of pruning to a great extent. However, this approach
requires a laborious and time-consuming process to determine the layer-wise pruning ratios.
We propose to use a global pruning ratio to get around this issue. Furthermore, to prevent a
potential precise decrease, we utilize self-attention to guide the �ntuning process seeking to
learn backbone features that highlight meaningful visual inter-dependencies.

2.3 Self-Attention in Vision

Attention mechanism is an attempt to mimic the human brain action of selectively concen-
trating on a few relevant things, while ignoring others in deep neural networks [37]. As a
special case, self-attention at the outset is the primary workhorse in NLP as it is an effective
and computationally ef�cient mechanism for capturing global interactions between words
in a sentence. But self-attention has properties, such as content-based interactions, ability
to capture long-range dependencies, �exibility to handle multiple types of data and etc, that
make it a good �t for vision tasks as well [38]. For instance, Wang et al. [43] presented non-
local operations for capturing long-range dependencies for video understanding, Fu et al.
[16] proposed DANet for semantic segmentation, Zhang et al. [50] demonstrated the effec-
tiveness of the self-attention in image generation, and Zhao et al. [53] explored two forms of
self-attention for image recognition. The usefulness of self-attention in many NLP and com-
puter vision tasks has already gotten the extensive identi�cation. Although self-attention has
spawned the rise of so many recent breakthroughs in NLP and computer vision, including the
Transformer architecture [37], BERT [13] and ViT [14], they come at a cost considering the
computing and memory overheads involved. In view of this and our goal of real-time DL-
based trackers, in this paper we avoid using self-attention in inference, but instead exploit
it to guide our tracker in the training phase, which enables us to boosts tracking precision
without introducing additional computation overhead in the inference phase.

3 Proposed Method

3.1 PS-SiamFC++ Overview

The overview of the proposed PS-SiamFC++ is shown in Fig. 1. It consists of a backbone,
a neck, a head network, and a self-attention module. The target patch Z and the search
patch X are the inputs for the template branch and the search branch, respectively. The
shared backbone network of the two branches is denoted byf (�). The cross-correlation
operation is conducted to the output backbone features of the two branches before they are
passed to subsequent classi�cation and regression tasks. The features produced by the cross-
correlation operation are formulated by:

fl (Z;X) = y l (f (Z)) ?y l (f (X)) ;y l 2 f y cls;y regg; (1)

wherey cls(�) andy reg(�) denote the layer that is speci�cally designed for the tasks of clas-
si�cation and regression, respectively.? represents the cross-correlation operation. The
classi�cation branch predicts the category for each location, and its output is denoted by
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Figure 1: An illustration of the proposed PS-SiamFC++ method. The network structure is
inherited from that of SiamFC++.

Ocls
h� w� 2; the regression branch is to compute the target bounding box at this location, and

its output is denoted byOreg
h� w� 4, wherew andh are the width and height of the outputs,

respectively. More speci�c,Ocls
h� w� 2(i; j ; :) is a 2D vector to record foreground and back-

ground scores of the location(i; j), while Oreg
h� w� 4(i; j ; :) is a 4D vector that shows how far

the corresponding location is from the bounding box's four sides. The purpose of the center-
ness branch is to evaluate classi�cation qualities. Its output is denoted byOcen

h� w� 1, which is
�nally used to reweight the classi�cation scores. The self-attention module is exploited to
guide the �netuning process, which will be detailed in the following subsection.

3.2 Filter Pruning with Self-Attention

PS-SiamFC++ inherits the pipeline of SiamFC++ with the difference that the �lters con-
sidered less important are pruned and a self-attention module is incorporated to guide the
�netuning process. Let's �rst describe the rank-based �lter pruning. We denote thei-th (16
i 6 K) convolutional layerCi of SiamFC++ by a set of 3-D �ltersWCi = f wi

1;wi
2; :::;wi

mg 2
Rni � ni� 1� ki � ki , whereni is the number of �lters inCi , ki denotes the kernel size, and thej-th
�lter is wi

j 2 Rni� 1� ki � ki . The �lters' output feature maps are denoted byOCi = f oi
1;oi

2; :::;oi
mg 2

Rni � g� hi � wi , whereoi
j 2 Rg� hi � wi is associated withwi

j , g is the number of input images,hi
andwi denote the height and width of the feature maps, respectively. The rank-based �lter
pruning aims to minimize the following objective function:

min
di; j

K

å
i= 1

ni

å
j= 1

di; j EI � P(I ) [R (oi
j (I ))] ; s:t

ni

å
j= 1

di; j = ni
p; (2)

whereI follows theP(I ) distribution representing an input image,ni
p represents the number

of �lters to be pruned inCi . di; j 2 f 0;1g indicates whether or not the �lter is pruned,di; j = 1
if it is, otherwisedi; j = 0. R(�) calculates a feature map's rank as a measure of how rich its
information is. The expectation of the rank generated by a single �lter is empirically proved
to be robust to the input images [33], by which Eq. (2) is approximated by

min
di; j

K

å
i= 1

ni

å
j= 1

di; j

g

å
t= 1

R (oi
j (It )) ; s:t

ni

å
j= 1

di; j = ni
p; (3)

wheret indexes the input images. Eq. (3) is readily minimized by pruningnpi �lters that
have the lowest average rank of feature maps.

After pruning the less important �lters, the compressed network will be �netuned to opti-
mize the parameters for the compressed model. To make the �netuning more productive, we
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utilize the self-attention mechanism to draw dependencies between spatial features, seeking
to enhance signi�cant parts while diminishing less informative parts of the features output
by the pruned backbone for our tracking task. How the self-attention module plays a part
is illustrated in Fig. 1. The backbone output in the template branch, denoted byfZ, will be
fed into a multi-head self-attention module to generate an enhanced feature representation
f �
Z , which is used in turn to supervisefZ with the mean squared error (MSE) lossLmse. The

self-attention module consists of a Multi-Head Self-Attention layer (refer to supplementary
material for its concrete structure). Intuitively, the attention mechanism describes a weighted
average of (sequence) elements with the weights dynamically computed based on an input
query and elements' keys. In our implementation,fZ is encoded in a pixel-wise manner, i.e.,
the spatial coordinates offZ index the tokens, and the query, key and value are initially the
same, for simplicity. Note that the output of the self-attention module is used for �netuning
only, the module plays no part in the inference phase.

We now formulate the losses for �netuning the PS-SiamFC++. Let(x0;y0) and(x1;y1)
denote the ground truth bounding box's left-top and right-bottom coordinates, and(x;y)
denote the corresponding location of point(i; j), then the regression targett̂(i; j) = f t̂k

(i; j)g
3
k= 0

of Oreg
h� w� 4(i; j ; :) is

t̂0
(i; j) = l̂ = x� x0; t̂1

(i; j) = t̂ = y� y0; t̂2
(i; j) = r̂ = x1 � x; t̂3

(i; j) = b̂ = y1 � y: (4)

The differences betweenOreg
h� w� 4(i; j ; :) and the regression target is penalized by the loss

Lreg =
1

å i; j I (t̂(i; j) )
å
i; j

I (t̂(i; j) )LIOU (Oreg
(i; j ;:) ; t̂(i; j) ); (5)

whereLIOU is the IOU loss as de�ned in [49],I (�) is the indicator function de�ned as follow

I (t̂(i; j) ) =
�

1 i f t̂k
(i; j) > 0;k = 0;2;2;3

0 otherwise:
(6)

DenoteOcen
h� w� 1(i; j), i.e., the centerness score at(i; j), by c(i; j) as follows,

c(i; j) = I (t̂(i; j) ) �

s
min(l̂ ; r̂)

max(l̂ ; r̂)
�

min(t̂; b̂)

max(t̂; b̂)
: (7)

The centerness loss is de�ned by

Lcen=
� 1

å i; j I (t̂(i; j) )
å

I (t̂(i; j) )= 1

c(i; j) � log(Ocen
h� w� 1(i; j)) + ( 1� c(i; j)) � log(1� Ocen

h� w� 1(i; j)) : (8)

Finally, the overall loss for �ntuning PS-SiamFC++ is:

L = Lcls+ l 1Lreg+ l 2Lcen+ l 3Lmse( fZ; f �
Z); (9)

whereLcls is the cross-entropy loss for classi�cation,l 1, l 2, andl 3 are prede�ned constants.

3.3 Pruning Schedule

The pipeline of pruning is: First, calculate the average rank of the feature map of any �lter
in each layer to obtain the rank setsf RigK

i= 1 = ff r i
1; r i

2; :::; r i
ni

ggK
i= 1. Second, each setRi is

sorted in decreasing order, resulting inR̄i = f r i
si
1
; r i

si
2
; :::; r i

si
ni

g, wheresi
j denotes the index

of the j-th top value inRi . Third, perform �lter pruning with a prede�ned global pruning
ratio r , after whichRi turns toR̂i = f r i

si
1
; r i

si
2
; :::; r i

si
n̂i

g, n̂i = ni � np
i and incorporate the self-

attention module to obtain the PS-SiamFC++ model. Finally, PS-SiamFC++ is �netuned
after the remained �lters are initialized with the original weights in the trained SiamFC++.




