Self-adversarial Multi-scale Contrastive Learning for Semantic Segmentation of Thermal Facial Images Jitesh Joshi, Nadia Bianchi-Berthouze, Youngjun Cho*

Department of Computer Science, University College London, UK

Motivation: Challenges in Identifying Regions of Interest

Thermal facial images exhibit:

- Less salient facial features
- Physiology driven changing spatio-temporal patterns.
- •Pose variations.
- •Occlusions such as hairs, eyeglasses.
- Changing spatio-temporal patterns due to varying ambient thermal conditions.

1.A. Duarte et al., 'Segmentation Algorithms for Thermal Images', Procedia Technology, vol. 16, pp. 1560–1569, Jan. 2014, doi: 10.1016/j.protcy.2014.10.178 2.Kopaczka et al., 'A fully annotated thermal face database and its application for thermal facial expression recognition'. I2MTC Conference, 2018. doi: 10.1109/I2MTC.2018.8409768. ZSCC: 000002

Proposed Framework: Self-adversarial Multi-scale Contrastive Learning (SAM-CL)

This work introduces SAM-CL framework to address below challenges in training existing segmentation networks for thermal images:

Limited size of datasets.

•Unavailability of thermal images acquired in real-world settings such as:

•Unavailability of pretrained weights that are essential for applying existing state-of-the-art (SOTA) learning strategies, such as supervised contrastive learning.

SAM-CL framework consists of:

- •Thermal image augmentation (TiAug) module to generate representations of unconstrained thermal settings by applying domain-specific transformations to the thermal images acquired in controlled settings.
- •Self-adversarial multi-scale contrastive loss function, that utilizes the adversarial attacks made by the TiAug module to achieve intra-class proximity and inter-class separation of the feature representations.

Project web-page: https://github.com/PhysiologicAlLab

* Corresponding author: youngjun.cho@ucl.ac.uk

Maps (Y-)

Proposed Thermal Image Augmentation (TiAug) Module n^{HxW} **Basic Image Manipulation** Thermal Noise Pixel-wise noise (max = $0.1 \degree$ C; ~ Geometric Transformations ________________ **Parameters for Synthesized Occlusions** ~1% to ~40% of face area Size ► Irregularity – 0 to 10% → Vertices – 2 to 30 Shape Spikeness – 0 to 50% Min – (Max – Min) Temperature Max + (Max – Min) Two occlusions; Both Two connected Two connected at different and lower occlusions; Both at occlusions; Both at temperature than same and lower same and higher Across entire image Position temperature than foreground temperature than foreground oreground → Single Configurations +→ Dual $f = f_{occ}(I_{org}^{HxW}, g(\vartheta_{sz}, \vartheta_{sh}, \vartheta_{temp}, \vartheta_{xy}, \vartheta_{config})) + \eta^{HxW}$ └→ Connected Objects

 I_{aug}^{HxW}

Submodules proposed in this work

Effectiveness of the TiAug Module

- Typically, the foreground (facial region) is at higher temperature than background or ambient temperature, when images are acquired in controlled settings.
- As evidenced by the box-plot analysis, the TiAug module is effective in generating diverse foreground-background temperature distributions, that represent real-world settings.

• The TiAug module presents self-adversarial attacks for training the segmentation network by generating challenging real-world appearances.

Proposed SAM-CL Loss Function

 $\mathcal{L}_{s0}(Y_{oh}, Y_{oh}^+, Y_{oh}^-) = \max\{d(Y_{oh}, Y_{oh}^+) - d(Y_{oh}, Y_{oh}^-) + margin, 0\}$ $\mathcal{L}_{SAM-CL} = \mathcal{L}_{s0}(Y_{oh}, Y_{oh}^+, Y_{oh}^-) + \mathcal{L}_{s1}(Y_{Conv1}, Y_{Conv1}^+, Y_{Conv1}^-) +$ $\mathcal{L}_{s2}(Y_{Conv2}, Y^{+}_{Conv2}, Y^{-}_{Conv2}) + \mathcal{L}_{s3}(Y_{Conv3}, Y^{+}_{Conv3}, Y^{-}_{Conv3})$

Predicted segmentation mask (Y) or logits, ground-truth mask (Y⁺) and class-swapped mask (Y⁻) are passed through the auxiliary network and down-convolved.

Triplet loss is applied at each layer, resulting in multi-scale contrastive loss function.

Quantitative Performance Analysis

Segmentation Network	Learning Strategy (Loss Function)	mIoU (%)	Segmentation Network	Learning Strategy (Loss Function)	mIoU (%)
UNET [152]	Pixel-wise Segmentation (BCE)	67.64	Attention UNET [138]	Pixel-wise Segmentation (BCE)	66.61
	Pixel-wise Segmentation (DICE)	75.00		Pixel-wise Segmentation (DICE)	75.14
	GAN (SegAN) [190]	76.79		GAN (SegAN) [190]	76.75
	GAN (SegGAN) [200]	75.50		GAN (SegGAN) [200]	76.24
	RMI [201]	81.35		RMI [201]	81.39
	ContrastiveSeg [183]	81.24		ContrastiveSeg [183]	81.50
	SAM-CL (Ours)	82.11 (+0.76)		SAM-CL (Ours)	82.85 (+1.35)
DeepLabV3+ResNet101 [29, 66]	RMI [201]	75.85	HRNetV2-W48 [171]	RMI [201]	78.46
	ContrastiveSeg [183]	74.45		ContrastiveSeg [183]	78.36
	SAM-CL (Ours)	79.29 (+3.44)		SAM-CL (Ours)	78.97 (+0.61)

Segmentation Network	mIoU (%) Performance				
Segmentation Petwork	RMI	RMI + TiAug	RMI + TiAug + SAM-CL		
UNET [152]	81.36	81.91	82.11		
Attention UNET [138]	81.39	82.29	82.85		
HRNetV2-W48 [171]	78.13	78.87	78.97		
DeepLabV3+ResNet101 [29, 66]	75.85	78.07	78.12		
DeepLabV3+Xception [29, 41]	76.55	77.31	77.85		

Qualitative Performance Analysis

* DeepBreath Dataset * Occlusions - eyeglasses

- * Unconstrained thermal a
- * Mobile thermal images

Ablation Study

Consistent performance gains are observed for all the segmentation networks when thermal images are augmented using the TiAug module and the SAM-CL loss function is used for optimization.

