Prior-Aware Synthetic Data to the Rescue: Animal Pose Estimation with Very Limited Real Data
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SynAP contains 3,000 synthetic zebra images and SynAP+ extends the SynAP with 3,600
images of horses, cows, sheep, dogs, giraffes and deer.

Background

300 grass, savanna, and forest real scenes are collected from Internet to stylize the synthetic
animal.

In conclusion, our synthetic animal pose dataset SynAP and its extended

version SynAP+, and th of real data is verified on different backbones and
achieves state-of-the positive effect of them on pose estimation task of animals
with a small amounte-art performance.




