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Abstract

Building deep machine learning systems to classify image data in real-world applica-
tions requires not only a quantification of the accuracy of the models but also an under-
standing of their reliability. With this in mind, the uncertainty calibration of Deep Neural
Networks in the task of image classification is addressed in this work. We propose a
novel technique based on test time augmentation, called Adaptive-TTA, that - unlike tra-
ditional test time augmentation approaches - improves uncertainty calibration without
affecting the model’s accuracy. This technique is evaluated with respect to the Brier
score - a proper scoring rule for measuring the calibration of predicted probabilities - on
the classical CIFAR-10/CIFAR-100 computer vision datasets, as well as on the bench-
mark satellite imagery dataset AID, using different augmentation policies. Our approach
outperforms temperature scaling, a state-of-the-art post-hoc calibration technique, on all
the three aforementioned datasets.

1 Introduction
Real-world applications of machine learning (ML) systems require a thorough look into the
reliability of the learning models and consequently to their uncertainty calibration (also re-
ferred as confidence calibration or simply calibration). In addition to having highly accurate
classification models, the user should be able to "trust" their predictions, specially when
dealing with critical application domains1, where wrong decisions can result in potentially
dramatic consequences. To do so, it is required that the confidence output generated by
the referred ML models (that translates the confidence the model has in the prediction that is
making) realistically represents the correct likelihood of its prediction - i.e., the model is cal-
ibrated. A calibrated model allows for an accurate quantification of predictive uncertainty,
which results in reliable confidence values associated with its prediction.

Although successful ML approaches have been proposed in recent years in classification
tasks for a multitude of applications, due to the accuracy of modern Deep Neural Networks
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1For example, self-driving cars and autonomous robotics.
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(DNNs), such deep models have been found to be tendentiously uncalibrated [6, 23], making
either overconfident or underconfident predictions, which make them unusable in scenarios
where wrong classifications may carry undesirable consequences. Therefore, improving the
calibration of these Deep Learning (DL) models is the goal of the method presented in this
work, which is based on a novel approach to test time augmentation.

Test time augmentation is a methodology that relies on data augmentation techniques to
create multiple samples from the original input at inference. Contrarily to traditional data
augmentation methodologies, the proposed augmentations are, in this case, carried out only
before prediction (at the testing phase) and not during the training process of the machine
learning models, therefore being easily applied to pre-trained models. Inspired in this type of
techniques, we introduce Adaptive-TTA that leverages the use of test time augmentation com-
bined with a custom weighting system – that guaranties consistency in terms of the model’s
accuracy – to obtain better calibrated outputs in DNNs. Our experiments are made in the
classical CIFAR-10/CIFAR-100 [12] datatasets, as well as in a benchmark satellite imagery
dataset, with 30 different classes, named Aerial Image Dataset (AID) [31]. The results are
compared with the performance of temperature scaling, a state-of-the-art post-hoc calibra-
tion method, with respect to the Brier score [2].

Our contribution is twofold:

• A novel technique based on test time augmentation, named Adaptive-TTA, that guaran-
tees consistency in the model’s accuracy while improving its uncertainty calibration;

• A study of the effects of different augmentation policies in the uncertainty calibration
of the presented models, in the context of the novel technique introduced.

2 Related Work

The topic of uncertainty calibration in DNNs has been introduced in [6], where the authors
evaluate calibration in various datasets in both Computer Vision and Natural Language Pro-
cessing applications, with different modern DNNs. They argued that although more recent
DL architectures have allowed for improved accuracy in various tasks, modern DL models
are often less calibrated than older counterparts.

One popular calibration metric is the Expected Calibration Error (ECE) [19], that eval-
uates the bin-wise difference between accuracy and confidence. Nevertheless, some authors
have identified limitations regarding the usage of ECE as a calibration metric [7, 22, 30],
namely its dependence on the selected binning scheme and intractability. Additionally, ECE
is not a proper scoring rule [4] like for example Brier score [2] - an increasingly popular
metric to assess the calibration of predicted probabilities [11, 15, 23, 27] - that overcomes
some of the limitations of ECE.

Post-hoc calibration methods - which can be applied after the training process of a DNN -
are used in [6] to tackle the referred calibration problems. Temperature scaling is introduced
as an extension of the Platt scaling algorithm [21, 25], and has the best performance on most
datasets against other algorithms like histogram binning [32] and isotonic regression [33].
Given its good performance, temperature scaling is usually used as baseline for comparison
of calibration methods [7, 9, 11, 13, 23].

Other approaches, like approximate Bayesian models [3, 5] and some regularization tech-
niques [17, 24], have also been used in the context of uncertainty calibration [23]. The
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caveats are that these approaches require building new, and more complex models, or modi-
fying and re-training pre-existing ones, contrarily to the previously mentioned post-hoc cal-
ibration methods and the method proposed in this work.

In recent years, some attention has been given to test time augmentation methods - es-
pecially in biomedical applications [16, 28, 29] - although, to the best of our knowledge,
all relevant literature fails to address its effect on calibration-specific metrics like the Brier
score, or even ECE. The use of this technique opens the possibility for a multitude of aug-
mentation policies; for instance, both [10] and [14] focus on learnable augmentation policies,
which falls out of the scope of this work, but may open different possibilities for the appli-
cation of methods based on test time augmentation. It is worthy of note that the work in [26]
makes an interesting study on the effects of test time augmentation on the accuracy of mod-
els, showing that such technique may produce corrupted predictions which can ultimately
worsen the model’s performance. This is one the motivations of the work here developed,
since our novel approach allows the usage of test time augmentation in the context of uncer-
tainty calibration without corrupting the model’s accuracy.

3 Background

Notation For the remainder of this work we will use bold notation to denote vectors, like
p = (p1, . . . , pk). We can also refer to the i-nth element of the vector p as p(i) := pi. Finally,
the ↓ symbol, associated with a given metric, informs that a lower value of such metric rep-
resents a better performance.

In this section we describe practical metrics for assessing uncertainty calibration, as well
as the popular post-hoc calibration method - temperature scaling - that will be used as base-
line for comparison against the approach proposed in this work. Besides Brier score - that
will serve to evaluate the performance of our method - we will also describe ECE, since it
has been empirically found useful in the parameter optimization of Adaptive-TTA. Contrarily
to Brier score, ECE is not a proper scoring rule and so there exist trivial uninformative so-
lutions that result in an optimal score (e.g., always returning the marginal probability), thus
making it less useful when evaluating the predictive uncertainty of a given model.

We will start by making a brief introduction to the concept of uncertainty calibration. Let
us consider X an input space, Y the corresponding set of true labels and a model f : X → ∆k,
with ∆k = {(p1, . . . , pk) ∈ [0,1]k : ∑

k
i=1 pi = 1} a probability simplex. For some x ∈ X , the

corresponding label y ∈ Y , p = (p1, . . . , pk) ∈ ∆k and

c(x) = argmax
i∈{1,...,k}

f (x), (1)

a predicted confidence value pi is considered calibrated if

pi = P(y = i| f (x) = p,c(x) = i). (2)

The model f is considered calibrated if it only outputs calibrated predictions. However, as
stated in [6], achieving perfect calibration is impossible in practical settings. Furthermore,
the probability in the right hand side of (2) cannot be computed using finitely many samples,
which motivates the need for scoring rules to assess uncertainty calibration.
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3.1 Brier score ↓
Brier score [2] is a proper scoring rule [4] that computes the squared error between a pre-
dicted probability and its true response, hence its utility to evaluate model calibration. For a
set of N predictions we define the Brier score as

BS =
1
N

N

∑
j=1

(p j −o j)2, (3)

where p j is the confidence value of the predicted class and o j equals 1 if the true class
corresponds to the prediction and 0 otherwise (we use here superscript indexation to avoid
confusion with the previous notation). We refer to [18] and [1] for some thorough insights
about the interpretability and decomposition of the Brier score.

3.2 Expected Calibration Error ↓
To compute the Expected Calibration Error (ECE) [19] we start by dividing the interval [0,1]
in M equally spaced intervals. Then a set of bins {B1,B2, . . . ,BM} is created, by assigning
each predicted probability value to the respective interval. The idea behind this measurement
is to compute a weighted average of the absolute difference between accuracy and confidence
in each bin Bi (i = 1, . . . ,M). We define the confidence for each bin as

con f (Bi) =
1
|Bi| ∑

j∈Bi

p j, (4)

where p j is the predicted confidence for the sample j, and accuracy as

acc(Bi) =
1
|Bi| ∑

j∈Bi

o j, (5)

where o j is defined as previously in (3). Then the ECE is calculated, for a total of N samples,
as

ECE =
M

∑
i=1

|Bi|
N

|con f (Bi)−acc(Bi)|. (6)

3.3 Temperature scaling

Temperature scaling is the most popular post-hoc calibration technique and it has been shown
to be a robust method in various applications [6]. As referred before, this method can be used
with models that are already trained and ready to be deployed, contrarily to other techniques
that require re-training, modifying or rebuilding the models.

For a classification problem with k different classes and for a logit vector z = (z1, . . . ,zk),
we replace the usual softmax function

σSM(z)(i) =
ezi

∑
k
j=1 ez j

, i = 1,2, . . . ,k, (7)
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with the temperature scaled version, for T > 0,

σT S(z)(i) =
ezi/T

∑
k
j=1 ez j/T , i = 1,2, . . . ,k. (8)

This parameter T is optimized w.r.t. the Negative Log Likelihood (NLL) in a validation set.
Since T is the same for all classes (and T > 0), the following equality holds true

max
i∈{1,...,k}

σSM(z) = max
i∈{1,...,k}

σT S(z), (9)

which means that temperature scaling will not change the model’s accuracy.
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Figure 1: Comparative scheme illustrating, from a “high level” perspective, the general dif-
ferences between the approaches evaluated in this work - vanilla (referring to the results
obtained from the DNN without any type of calibration method), temperature scaling and
our novel method Adaptive-TTA.

4 Proposed Method: Adaptive-TTA
In this section we describe the proposed calibration method - Adaptive-TTA - that consists in
an innovative approach to test time augmentation. We start by introducing a classical naive
approach to test time augmentation and then detail the differences in our methodology.

Test time augmentation leverages the use of data augmentations only before inference,
contrarily to traditional augmentation methods that are applied during the training process of
a given model. Thus, just like temperature scaling (previously described), this methodology
is easily applied to pre-trained models. Formally, for an input I0, we conduct n different
transformations, obtaining n+ 1 different inputs I0, I1, . . . , In; then, we feed all the different
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inputs to our model resulting in n+1 different prediction probability vectors p0,p1, . . . ,pn;
finally all the predictions are averaged to obtain the final prediction probability vector

p =
∑

n
i=0 pi

n+1
. (10)

A naive application of test time augmentation, like in (10), can corrupt predictions and ul-
timately have a negative impact on the model’s accuracy [26]. Hence, we propose Adaptive-
TTA that, in line with temperature scaling, does not alter the class predicted by the model
in which is applied and therefore can be specifically optimized to tackle problems regarding
uncertainty calibration, without the concern of corrupting the model’s accuracy in the pro-
cess. Let us note that, given that most common augmentations have parameters with random
properties, it can be useful to apply the same type of augmentation more than once, because
it produces different results. For the same reason (randomness in parameters) it only makes
sense to find one weight per augmentation type. As such, in the case of Adaptive-TTA, for m
different types of augmentation, each one applied ni times (i = 1, . . . ,m), and for some vector
(ω1,ω2, . . . ,ωm) ∈ Rm, we define our prediction probability vector as

p(ω̄) = (1− ω̄)p0 +
ω̄ ∑

m
i=1 |ωi|∑ni

j=1 pi
j/ni

∑
m
i=1 |ωi|

(11)

with

ω̄ = max
{

ω ∈ [0,ω∗] : argmax
i∈{1,...,k}

p(ω) = argmax
i∈{1,...,k}

p0

}
. (12)

For the sake of clarity, let us note that the vector pi
j denotes the probability prediction vector

associated with the j-nth augmentation of the i-nth type. Also, k refers to the number of
classes.

The value of ω̄ may vary in each prediction, adapting in a way that prevents corruptions
in terms of accuracy, accordingly to the definition in (12). In a practical scenario, the value
ω̄ is determined in the following way: starting with ω0 := ω∗, iterating with ω t = ω t−1 − ε

(in our case ε = 0.01) and stopping at the moment t∗ when the condition

argmax
i∈{1,...,k}

p
(

ω
t∗
)
= argmax

i∈{1,...,k}
p0 (13)

is satisfied, thus defining ω̄ := ω t∗ ; this has low computational effort since the probability
vectors for each augmentation are only computed in the beginning of the iterations.

Both ω∗ ∈ [0,1] and (ω1,ω2, . . . ,ωm) ∈ Rm are pre-defined, and are dependent on the
dataset we are working with; they can be defined by formulating an optimization problem
with a give validation set, such as described in Section 5.

Figure 1 shows an illustration of the differences between Adaptive-TTA and the other
approaches evaluated in this work, from a “high level” perspective.

5 Experiments and Results
In this section we present the results obtained with Adaptive-TTA - in terms of Brier score -
for the three previously referred datasets, CIFAR-10, CIFAR-100 and AID. As mentioned,
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the proposed method can be applied with an highly extensive set of augmentations policies,
thus, in this work, we present a study of different types of augmentation policies in the
context of our novel approach. For practical reasons, the types of transformations used are
limited to four: flip, crops and also changes in brightness and contrast. A flip transformation
consists on a flip around the vertical axis of the image input; a crop transformation creates a
cropped input with dimension of ratio τ from the original input dimension, extracted from a
random position within the input image; a brightness transformation creates, from an original
input γ , a new input

γ
′ = γ +βγmax, (14)

where γmax is the maximum pixel value from γ , and β is a random number extracted from a
continuous Uniform distribution within a given interval [βmin,βmax]; a contrast transforma-
tion creates, from an original input γ , a new input

γ
′′ = γ(1+α), (15)

where α is a random number extracted from a continuous Uniform distribution within a
given interval [αmin,αmax].

The results obtained using Adaptive-TTA are compared against the performance of tem-
perature scaling and a vanilla approach (referring to the results obtained from the DNN
without any type of calibration method). In all experiments, a ResNet [8] architecture is
used; the DNNs trained on the CIFAR-10 and CIFAR-100 datasets have 56 residual layers,
while the DNN trained with the AID dataset has 50 residual layers. The achieved accuracy
values are 94.21%, 72.78% and 93.35%, for CIFAR-10, CIFAR-100 and AID test sets, re-
spectively.

For each experiment done with Adaptive-TTA, the parameters

ω
∗ ∈ [0,1], (ω1,ω2, . . . ,ωm) ∈ Rm, (16)

described in Section 4, are optimized on a given validation set (the nature of such validation
sets is described in the following subsections). For this optimization we use the ECE, with
15 bins, as the loss function, and a Nelder-Mead optimization algorithm [20]. For the cases
where the augmentation policy has parameters with random properties, the loss funtion is
the average of the ECE obtained after 10 different experiments. We have empirically found
that using ECE as a loss function accomplishes better results than using NLL or the actual
Brier score, when making this optimization process. We speculate that this choice of loss
function prevents the overfitting of the parameters for the given validation set.

5.1 CIFAR-10/CIFAR-100
Both CIFAR-10 and CIFAR-100 datasets are subsets of the tiny images dataset [12], with re-
spectively 10 and 100 different equally balanced classes. Both datasets have a total of 60000
RGB images with size 32× 32, and are divided in training and test sets, each comprising
50000 and 10000 images, respectively. For the purpose of this work, the first 1000 images
of the traditionally defined test set are assigned to a validation set and the remaining 9000
images compose our test set, for both cases.
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Figure 2: Results on the CIFAR-10 dataset. Adaptive-TTA Flip consists of one augmenta-
tion of the type flip; Adaptive-TTA Crop, Adaptive-TTA Brightness and Adaptive-TTA Con-
trast consist of five augmentations of the types crop (τ ≈ 0.78), brightness (βmin = −0.5,
βmax = 0.5) and contrast (αmin =−0.2, αmax = 0.2), respectively; Adaptive-TTA Mix 1 com-
bines the augmentations present in Adaptive-TTA Flip and Adaptive-TTA Crop; Adaptive-
TTA Mix 2 combines the augmentations present in Adaptive-TTA Mix 1 and Adaptive-TTA
Brightness; Adaptive-TTA Mix 3 combines the augmentations present in Adaptive-TTA Mix
2 and Adaptive-TTA Contrast. Given the randomness inherent to some transformation pa-
rameters, some results are presented in the form of box plots, resulting from 10 different
experiments.
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Figure 3: Results on the CIFAR-100 dataset. We refer to the caption of Figure 2 for detailed
information about the experiments and results.

Figure 2 shows the results relative to the experiments made in the CIFAR-10 dataset, with
respect to the effects of Adaptive-TTA (divided in seven different sub-methods, according to
different augmentation policies used) in the uncertainty calibration of the DNN classifier,
evaluated using the Brier score. It is noticeable that all presented approaches have better cal-
ibrated predictions than the vanilla procedure. Adaptive-TTA Flip and the mixed approaches
(Adaptive-TTA Mix 1, Mix 2 and Mix 3) achieved the best performance in terms of dealing
with the predictive uncertainty of the model - with Adaptive TTA Mix 1 being the best per-
forming sub-method - all of them outperforming temperature scaling. From the remaining
sub-methods, Adaptive-TTA Crop turns to be the most competitive of the three.

Figure 3 presents an analogous analysis of that shown in Figure 2, this time in the con-
text of the CIFAR-100 dataset. Focusing primarily on the different sub-methods of Adaptive-
TTA, we derive similar conclusions of those in the previous analysis, with Adaptive-TTA Flip
and the mixed approaches having the strongest performance, but general good results across
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the different augmentation policies deployed. Nonetheless, in this case, only Adaptive-TTA
Mix 2 and Mix 3 outperform the temperature scaling baseline. Once again, Adaptive-TTA
Crop also accomplishes competitive results.

5.2 AID

The AID [31] dataset comprises 10000 aerial scene RGB images with 600×600 pixels from
Google Earth for the task of aerial scene classification, having 30 different classes. For the
purpose of this work, this dataset is randomly divided into parcels of 70%, 10% and 20%, for
training, validation and test sets, respectively. This dataset represents a fruitful addition to
our analysis, since it introduces more real-world complexity and variability - when compared
with the previous datasets - given its much greater resolution and the nature of its classes.

Figure 4 is analogous to the previous figures, this time presenting the results on the
AID dataset. The first observation to be made is that the common pattern observed in
the previously analyses is absent in this particular case. We verify that some of the ap-
proaches achieved results that are very close to the vanilla procedure, with temperature
scaling, Adaptive-TTA Flip and Adaptive-TTA Brightness actually slightly aggravating the
uncertainty calibration of the model (with temperature scaling having an increase in terms
of Brier score of approximately 0.1%, being the worst performing method). We speculate
that these differences in the results are caused by the aforementioned complexity and vari-
ability - present in this dataset - which probably caused some of the approaches to overfit
their parameters to the characteristics of the validation set (even though in this case the vali-
dation set is proportionally bigger than those of the previous experiments). Nonetheless, it is
possible to obtain satisfactory results with the proposed mixed approaches and, more impor-
tantly, Adaptive-TTA Crop accomplishes a relatively significant reduction of the uncertainty
calibration of the DNN.
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Figure 4: Results on the AID dataset. We refer to the caption of Figure 2 for detailed
information about the experiments and results.

6 Final Remarks

In this work we introduced Adaptive-TTA - a novel approach to test time augmentation - that
improves the uncertainty calibration of DNNs while preserving their accuracy. This method
is evaluated with different augmentation policies, and is found to outperform temperature
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scaling in the three datasets used in our experiments, with respect to the Brier score. Addi-
tionally, when analysing the results on the AID dataset, we verify that our method is capable
of accomplishing good results in complex scenarios, where temperature scaling actually
worsens the uncertainty calibration of the model.

Of the evaluated sub-methods, the mixed approaches were found to be the more consis-
tent, with good results on all three datasets. Based on this evidence, we can conclude that is
generally a good strategy to include different types of image transformations in the augmen-
tation policy used in Adaptive-TTA. Also, the crop transformation is generally present in the
best performing sub-methods, which introduces some evidence that this type of transforma-
tion preforms well with the proposed methodology.

Given the wide range of possibilities Adaptive-TTA can be applied (with multiple strate-
gies in terms of augmentation policies), this work opens the possibility for even deeper
research on the effects that different augmentation policies can have in this context. Fur-
thermore, it would be interesting to find further insights on the reasons why different aug-
mentation policies produce different results depending on the dataset they are applied, and
hopefully introduce an unifying framework for the application of Adaptive-TTA. Also, the
optimization process of the parameters of our method opens further possibilities for future
experiments.
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