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Building deep machine learning systems to classify image data in real-world applications requires not only a quantification of the accuracy of the models but also an
understanding of their reliability. With this in mind, the uncertainty calibration of Deep Neural Networks in the task of image classification is addressed in this work. We
propose a novel technique based on test time augmentation - Adaptive-TTA - that, unlike traditional test time augmentation approaches, improves uncertainty
calibration without affecting the model’s accuracy, by leveraging an adaptive weighting system.
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Introduction

Let us consider 𝑋 an input space, 𝑌 the corresponding set of true labels and a

model 𝑓: 𝑋 → Δ𝑘, with Δ𝑘 = { 𝑝1, … , 𝑝𝑘 ∈ 0,1 𝑘: σ𝑖=1
𝑘 𝑝𝑖 = 1} a probability

simplex. The model 𝑓 is considered calibrated if

The Problem of Uncertainty Calibration

Achieving perfect calibration is impossible in practical settings. Furthermore,
the probability values in the left hand side of the previous equation cannot be
computed using finitely many samples, which motivates the need for scoring
rules to assess uncertainty calibration like the Brier score.
For a set of 𝑁 predictions we define the Brier score (↓) as

where 𝑝𝑗 is the highest confidence value of the prediction 𝑗 and 𝑜𝑗 equals 1 if
the true class corresponds to the prediction, and 0 otherwise.

For 𝑚 different type of augmentations each one applied 𝑛𝑖 times (𝑖 =
1, … ,𝑚), and for some vector 𝜔1, 𝜔2, … , 𝜔𝑚 ∈ ℝ𝑚 and some value 𝜔∗ ∈
0,1 (see Experiments), we define our prediction probability vector as

Adaptive-TTA

with

The vector 𝐩𝑗
𝑖 denotes the probability prediction vector associated with the j-

nth augmentation of the i-nth type. Also, 𝑘 refers to the number of classes.
The value of may vary in each prediction, adapting in a way that prevents
corruptions in terms of accuracy. In a practical scenario, the value is
determined in the following way: starting with 𝜔0 ≔ 𝜔∗, iterating with 𝜔𝑡 =
𝜔𝑡−1 − 𝜖 (in this case 𝜖 = 0.01) and stopping at the moment 𝑡∗ when the
condition

is satisfied, thus defining ≔ 𝜔𝑡∗.

Results

For each experiment done with Adaptive-TTA, the parameters 𝜔∗ ∈ 0,1 and
𝜔1, 𝜔2, … , 𝜔𝑚 ∈ ℝ𝑚 are optimized on a given validation set, using the

Expected Calibration Error – with 15 bins – as loss function.

Adaptive-TTA was applied with seven different augmentation policies. Flip
consists of one flip transformation (around the vertical axis); Crop consists of
five crop transformations with 78% of the original size, in random position;
Brightness consists of five brightness transformations with a random intensity
value in the interval [-0.5,0.5]; Contrast consists of five contrast
transformations with a random intensity value in the interval [-0.2,0.2]; Mix 1
combines the augmentations present Flip and Crop; Mix 2 combines the
augmentations present in Mix 1 and Brightness; Mix 3 combines the
augmentations present in Mix 2 and Contrast. Given the randomness inherent
to some transformation parameters, some results are presented in the form of
box plots, resulting from 10 different experiments.

Experiments
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