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Abstract

Consistency of anatomical structure naturally exists among medical images from
multiple modalities, which provides powerful supervisory signals to self-supervised learn-
ing on aligned multi-modal medical images. However, it would lose efficacy due to
modality-specific attributes when directly applying current pixel-wise or region-wise
contrastive learning methods to pull aligned multi-modal data together in embedding
space. To address this issue, we propose a novel anatomy-aware self-supervised learning
framework, which represents anatomical structure in each modality using spatial simi-
larity distribution between image patches, to alleviate the ill effects of modality-specific
attributes and obtain a modality-consistent representation of anatomical structure. Signif-
icantly, we construct a correlation matrix to represent spatial similarity distribution and
design a consistency loss to align the distributions across modalities to maintain anatom-
ical consistency. Furthermore, we integrate it with instance-level discrimination into
a unified contrastive framework, where the learned features are augmentation-invariant
and modality-consistent. Extensive experiments on two medical datasets for the diagno-
sis of breast cancer and retinal diseases demonstrate that our proposed method achieves
superior performance to current related work.

1 Introduction
Self-supervised learning (SSL) learning has emerged as an effective method for learning
good feature representations. It leverages the input data itself as supervision [16, 22], such
as context-instance relationships [7, 9, 17], instance-instance contrast [6, 11, 14, 24, 33],
or dense contrast [23, 31, 34]. This characteristic is of great help to the field of medical
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imaging, since labelling medical images is expensive, time-consuming and requires exper-
tise [28]. Medical images are aligned or paired across multiple modalities, in which the
same lesion or tissues are located in the same position under different imaging techniques,
e.g., B-mode ultrasound and shear wave elastography (SWE), color fundus and fundus flu-
orescein angiography (FFA), etc. These modalities are complementary for a more accurate
diagnosis, which has been proved in supervised learning paradigms [5, 10, 21, 36], but still
understudied in self-supervised learning. Given that multi-modality medical images natu-
rally provide more views than uni-modality data, how to effectively utilize such information
as self-supervision is a key factor in self-supervised learning for multi-modal data.

Motivated by general paradigms in self-supervised learning for uni-modality data, many
current works on multi-modality medical data mainly utilize general semantic correspon-
dence as self-supervision, attracting different modalities of the same object in feature space.
Holmberg et al. [15] suggested that practical pretext tasks in medical domain should be
disease-related. Hence, they developed a novel pretext task, which employed two differ-
ent modalities, including optical coherence tomography scans (OCT) and infrared fundus
images, to predict retinal thickness. Li et al. [20] proposed to learn modality-invariant fea-
tures and patient-similarity features in a contrastive learning for retinal disease diagnosis on
paired FFA and color fundus images. The above-mentioned multi-modality methods all fo-
cus on overall semantic correspondence, ignoring local anatomical structures embedded in
medical data. Since human organs or tissues are intrinsically structured, there is an inherent
consistency underlying their appearance and layout in medical images [35](see Fig.1(a)).

With regard to local anatomy, an intuitive and direct solution is to transfer dense con-
trastive learning methods [23, 31, 32, 34] to multi-modality medical data. However, directly
applying these methods would be sub-optimal, as they simply pull corresponding regions
closer in feature space where modality-specific attributes would incur a strong bias in fea-
ture computation [12, 13]. For example, B-mode ultrasound reflects lesion shape [18], while
SWE focuses more on tissue stiffness [19]. It is required to obtain a modality-consistent
representation of anatomical structures with tolerance to modality-specific attributes.

To this end, we propose a novel anatomy-aware self-supervised learning framework for
aligned multi-modality medical images in an integrated contrastive learning manner, to ex-
ploit the spatial similarity distribution across local patches as well as the commonly-used
global information. For anatomical consistency, we construct a correlation matrix to rep-
resent spatial similarity distribution within each modality, and align the distribution across
modalities to capture anatomical consistency. As is shown in Fig.1(b), patch A and B repre-
sent peritumoral and intratumoral areas respectively. It is known that biological changes in
tumor-adjacent areas are potential predictive and prognostic markers to tumor diagnosis [27],
which remains modality-consistent. Correspondingly, it is rational to compute similarity be-
tween two local patches and use the spatial similarity distribution to reflect the variations
among the local anatomical structures. Significantly, such anatomical consistency is pro-
posed to serve as a more reliable and robust cross-modality self-supervision. It is not only a
soft regularization of local and anatomical correspondence to tolerate fine-grained modality-
specific attributes, but also models the overall structure of patch interrelationships. For global
representations, apart from augmented views of each modality, cross-modality views are also
formulated as positive pairs, providing enhanced semantic diversities.

Extensive experiments are conducted on two aligned multi-modality medical datasets
for the diagnosis of breast cancer and retinal diseases. Experimental results demonstrate
that our proposed method achieves superior performance to current representative works in
self-supervised learning, indicating that exploring spatial similarity distribution for modality-
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Figure 1: Anatomical structure in each modality is represented using spatial similarity distri-
bution between image patches, to alleviate the ill effects of modality-specific attributes and
obtain a modality-consistent representation of anatomical structure.

consistent anatomical representation could further enhance the self-supervision signal. Ab-
lation studies are carried out to further validate its effectiveness.

2 Methodology

2.1 Overall Framework

The proposed self-supervised learning framework is displayed in Fig.2, which explores the
spatial similarity distribution as modality-consistent representation of anatomical structure.
In the branch of self-supervision of anatomical consistency, we construct a correlation ma-
trix to represent patch similarity distribution and design a consistency loss to align simi-
larity distribution across modalities. In the branch of self-supervised representation learn-
ing of global-invariant features, modality-consistent and augmentation-invariant features are
learned in a contrastive manner. The network is optimized by consistency loss and global
contrastive loss simultaneously.

2.2 Problem Definition

Set N of paired data from two aligned modalities MA, MB, together with its augmented views
M̂ are fed into the neural network within a batch:

M = {(m1
A,m

1
B),(m

2
A,m

2
B), . . . ,(m

N
A ,m

N
B )};M̂ = {(m̂1

A, m̂
1
B),(m̂

2
A, m̂

2
B), . . . ,(m̂

N
A , m̂

N
B )} (1)

The neural network Gθ consists of ℓ stacked convolutional layers θ as the backbone, fol-
lowed by a projection head Θ:

Gθ = G(M,M̂;θ1,θ2, . . .θℓ,Θ) (2)

Our goal is to learn a good feature embedding network Gθ in an unsupervised manner, which
can embed image mi

A and mi
B into highly distinguishable vectors f i

A and f i
B ∈ Rd , where d

denotes the embedding dimension.
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Figure 2: An overview of our proposed method. Feature maps of aligned multi-modality
images are fed into the self-supervision of anatomical consistency. Feature vectors of aligned
images, together with their augmentations go into the self-supervised learning of global-
invariant features.

2.3 Self-Supervision of Anatomical Consistency
For the input pair data of multi-modality, modality-specific features are naturally embedded
in different modalities, since they present different attributes [18, 19] and some tissues or
tiny anatomical structures are only presented in a certain modality. Simply pulling region
features from different modalities closer to pursue absolute anatomical consistency would
incur strong bias. To alleviate the ill effects of these modality-specific attributes and mo-
tivated by the fact that relative region-wise relationship remains modality-consistent (see
Fig.1(b) and Sec.1), we propose to model such relation using spatial similarity distribu-
tion to obtain modality-consistent representation of anatomical structures for cross-modality
self-supervision. Moreover, it models overall structure of region interrelationships, while
previous works [23, 31, 34] only focus on discriminating corresponding pixels or regions.
Feature Maps and Patches: When the input data M and M̂ are fed into the neural network
Gθ , for each convolutional layer θ , it produces a feature map of pixel-wise embedding v
with the shape of C×H ×W for each single image (C denotes the number of channels, H
and W are the height, width of the feature map). To get patch-wise (region-wise) features,
we evenly divide the feature map into Nh ×Nw patches with the shape of ⌊ H

Nh ⌋×⌊ W
Nw ⌋. The

embedded feature si of the patch pi is defined as:

si =
∑(a,b)∈pi v(a,b)

||∑(a,b)∈pi v(a,b)||2
(3)

where a,b denote the position coordinates of the feature map within the patch pi.
Anatomical Consistency by Aligning Spatial Similarity Distribution: We first construct a
correlation matrix A in Eq.4, to reflect spatial similarity distribution in the high-dimensional
embedding space. Its elements denote patch-wise similarities.

Ai, j = sim(pi, p j) = sT
i s j,(i, j ∈ Nh ×Nw) (4)
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where sim(·) calculates the correlation score (cosine similarity) between two patches. In
aligned pairs of multi-modality images, such similarity distribution should be pulled to be
consistent across modalities. Therefore, we design a consistency loss to align this similarity
distribution for anatomical consistency, which is defined as:

LSD =
1

(NhNw)2 ∑
j
∑

i
(A(MA)

i, j −A(MB)
i, j )2 (5)

where A(MA) and A(MB) denote the correlation matrix in corresponding modality respectively,
(NhNw)2 is the number of elements in the matrix. Note that in the network Gθ , hierarchical
feature maps are produced by stacked layers of convolution θ . Therefore, the consistency of
spatial similarity distribution widely exists in the backbone network, and the overall consis-
tency loss is defined as:

LC =
1
|Q| ∑

θi∈Q
L(θi)

SD (6)

where Q is a set of convolutional layers selected for the calculation of consistency loss (|Q|
denotes set size) and L(θi)

SD is the consistency loss in the ith layer.

2.4 Global-Invariant Feature Representation
After the projection head Θ, the network Gθ embeds the input data (mA,mB) and (m̂A, m̂B)
into high-dimensional feature vectors (fA, fB) and (f̂A, f̂B). We then normalize all the feature
vectors by l2 normalization, i.e., ||fA||2 = ||fB||2 = ||f̂A||2 = ||f̂B||2 = 1. The overall global
feature representations are then learned in a contrastive manner, which mines invariant rep-
resentations across augmentations and modalities.
Augmentation-Invariant Features: The basic diagnosis of a medical image would not
change under augmentations. Accordingly, feature representation should be robust enough
to image augmentations. It can be implemented for each modality in a contrastive manner,
where original images and their corresponding augmentation versions are positive pairs. The
contrastive loss for augmentation-invariant features is defined as:

LMA
AUG =− 1

N

N

∑
i=1

log
exp(fi

A · f̂i
A/τ)

∑
N
j=1 exp(fi

A · f̂j
A/τ)

; LMB
AUG =− 1

N

N

∑
i=1

log
exp(fi

B · f̂i
B/τ)

∑
N
j=1 exp(fi

B · f̂j
B/τ)

(7)

LAUG = LMA
AUG +LMB

AUG (8)

where N denotes the size of the sample batch, dot product · is used to calculate cosine simi-
larity and τ is the temperature parameter.
Modality-Invariant Features: Similar to augmentation invariant features, images of the
different modalities from the same patient would share the same medical label and similar
semantic information. Therefore, in a contrastive learning method, images of modality A and
B belonging to the same patient are re-formulated as positive pairs, while the ones from dif-
ferent patients are considered to be negative samples. In practice, we treat each modality as
an anchor and enumerate over the other, then add them up as a two-view modality-invariant
loss:

LA→B
M =− 1

N

N

∑
i=1

log
exp(fi

A · fi
B/τ)

∑
N
j=1 exp(fi

A · fj
B/τ)

; LB→A
M =− 1

N

N

∑
i=1

log
exp(fi

B · fi
A/τ)

∑
N
j=1 exp(fi

B · fj
A/τ)

(9)
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LM = LA→B
M +LB→A

M (10)

In general, the final global contrastive loss function to capture global invariant feature
representations is defined as:

LGlo = LAUG +LM (11)

Our final learning objective is to optimize the overall loss function defined as:

L = LC +αLGlo (12)

where α is a scaling factor to balance different loss terms.

3 Experiments

Table 1: Experiment results of linear classification and finetuning on Breast US-SWE and
Synthesized Retinal Fundus-FFA datasets. The best two metrics in each group of experi-
ments are highlighted in red and blue. (Unit:%)

Pretrain Dataset Transfer DatasetPretrain Dataset Evaluation Protocol Method AUC Acc F1-score AUC Acc F1-score

InstDis-US 81.77 75.20 69.77 78.17 74.03 60.05
InstDis-SWE 85.85 78.16 72.23 74.88 71.56 54.34

CMC 86.77 79.89 74.57 79.12 74.17 58.61
SimCLR 88.54 77.77 72.59 79.80 73.70 59.11

InstDis-All 88.27 80.88 77.26 79.04 73.87 57.97
DenseCL 87.62 80.95 76.89 79.56 75.27 62.81

Linear Classification

Ours 90.11 82.43 78.46 82.02 76.81 62.46
w/o pretrain 83.15 74.86 74.97 85.11 79.29 66.97
InstDis-US 84.87 78.07 73.04 87.13 81.75 69.24

InstDis-SWE 89.32 82.21 78.42 86.99 81.75 70.81
CMC 91.10 83.83 79.66 87.53 81.90 70.82

SimCLR 90.22 81.76 79.34 88.94 80.06 68.16
InstDis-All 88.27 81.23 77.76 88.40 81.60 70.39
DenseCL 88.40 80.52 77.86 88.44 83.07 71.05

US-SWE

Finetuning

Ours 91.68 84.64 81.25 89.27 83.77 73.68
InstDis-FFA 82.79 71.87 55.59 95.30 84.81 87.23

InstDis-Fundus 83.22 73.65 56.16 95.88 87.34 88.89
CMC 85.42 78.90 57.29 95.32 87.03 88.74

SimCLR 82.06 77.94 53.00 94.85 83.54 86.02
InstDis-All 84.22 79.42 55.93 95.32 87.34 88.25
DenseCL 84.27 82.94 58.69 96.50 86.07 87.35

Linear Classification

Ours 86.46 81.43 57.80 96.32 87.61 89.09
w/o pretrain 79.24 62.82 48.23 97.16 87.34 89.36
InstDis-FFA 81.44 77.87 54.84 95.75 91.13 91.56

InstDis-Fundus 83.41 69.13 54.79 98.06 92.40 92.85
CMC 87.04 80.40 58.76 97.74 93.67 94.25

SimCLR 84.78 79.89 58.86 97.68 89.87 90.69
InstDis-All 84.13 80.64 55.66 96.46 91.13 91.56
DenseCL 87.56 77.43 63.17 97.68 91.13 92.13

Fundus-FFA

Finetuning

Ours 88.58 81.42 62.50 98.59 91.35 95.23

3.1 Implementation Details
Dataset. For pretraining, we use Breast US-SWE dataset [5] and Synthesized Retinal Fundus-
FFA dataset [20]. We transfer models pretrained on these two datasest to BUSI [1] and
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IChallenge-PM [8] dataset respectively, to validate the transfer capacity of the method. Five-
fold cross validation is conducted. Dataset details are listed in the supplementary materials.
Evaluation Protocol. We adopt linear classification and finetuning in the original and trans-
fer dataset. Original metrics without pretraining in finetuning protocol is also reported.
Network Architecture. We adopt Vgg16 [26] as backbone network, and the projection head
consists of a linear layer and ReLU, to reduce the feature dimension to 500.
Experiment Settings. All of our codes and experiments are built on PyTorch [25] with
4 NVIDIA GeForce RTX 3090 GPUs. All the input images are resized to 224× 224. To
keep anatomical information, we adopt relatively moderate data augmentations (flip, crop
and light color jittering) in [11, 20]. In each feed forward, we set the batch size as 128. The
network is optimized with SGD optimizer [2] with the learning rate of 0.03 and a weight
decay of 1e−4. We train our network for 200 epochs on Breast US-SWE dataset, and 2000
epochs (follow [20]) on Synthesized Retinal Fundus-FFA dataset.
Hyper Parameters. The temperature parameter is 0.07 and the scaling factor α in overall
loss function is 3. For the feature maps, we choose the last 4 hierarchies of the feature maps
and divide each feature map into 4× 4 patches to calculate the consistency loss. We also
analyze the sensitivity of these two parameters in Sec.3.3.

3.2 Experiment Results
To evaluate the effectiveness of our method, we compare it with some baseline models on
both Breast US-SWE and Synthesized Retinal Fundus-FFA dataset.
Baseline Models. We find very few works directly working on multi-modality data. In-
stance Discrimination (InstDis) [33] is an early and essential work of contrastive learning.
We carry out experiments with both single and multi-modality settings as a baseline method.
SimCLR [6] is one of the SOTAs in SSL upon global views. CMC [29] focuses on con-
trasting images of multiple views, which is highly related to multi-modal data in our scope.
DenseCL [31] is another SOTA method from a local and dense perspective and could cap-
ture absolute anatomical consistency in medical images. Since SimCLR and DenseCL are
originally designed for uni-modality data, we consider augmented multi-modal pairs to be
positive pairs to fit the original setting. The above-mentioned methods cover competitive
methods in different types of self-supervised learning, providing an insight into the compar-
isons with representative baseline works and approaches from global, local anatomical and
multi-modal viewpoints. We do not compare our method with stronger SOTAs like DINO [4]
or SwAV [3], because our contributions are orthogonal to further enchance these methods.
Main Results. Table.1 (Left) shows the experimental results on two pretrained datasets. It
is noticed that InstDis on single-modality perform relatively poorly on two datasets, because
features from another modality cannot be integratedly learned in single-modality methods.
Also, multi-modality methods do not always perform better. SimCLR achieves the worst re-
sult in the linear classification on Synthesized Retinal Fundus-FFA dataset. The main reason
is that strong augmentations[6] would hurt the performance in fundus image classification.
Similar phenomenon is also discovered in [20]. Moreover, DenseCL does not perform well,
because it ignores fine-grained modality-specific attributes and incurs bias. Generally, our
proposed method achieves the best performance in 9 out of 12 metrics. Especially in AUC, it
improves on other methods by 1.57%, 0.58%, 1.04% and 1.02%. Such experimental results
demonstrate the effectiveness of the propose method.
Transfer Capability. Table.1 (Right) also shows the transfer learning results of all methods.
Our proposed method excels other methods in AUC in 3 out of 4 groups of transfer exper-
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Consistency Global AUC Acc Prec

✓ 75.99 54.25 49.77
✓ 87.89 81.07 79.70

✓ ✓ 90.11 82.43 80.84

Table 2: Linear classification results on
US-SWE dataset to ablate each loss com-
ponent. (Unit: %)

iments by 2.22%, 0.33%, 0.53% (the other one falls behind by only 0.18%). In general,
transfer learning results are consistent with experimental results on pretrained datasets. Our
proposed method shows superior performance over other baseline models, which indicates
that our method could generalize to different downstream datasets.

3.3 Ablation Study
Analysis of Consistency Loss and Global Contrastive Loss To validate the effective-
ness of two loss terms, we train our unsupervised model with global loss and consistency
loss separately. As is shown in Table.2, the overall loss function L = LC +αLGlo achieves
the best performance over the other two. When trained with consistency loss alone, the
model performs poorly. This is because without global loss, the global representation is not
optimized to capture the instance and modality level relationship, which is important for se-
mantic downstream tasks (i.e. classification). Moreover, Fig.3 indicates that the global loss
and consistency loss would converge to smaller values when they are trained together versus
when they are trained individually. Therefore, the two loss functions are mutually beneficial.
Notably, with the contribution of consistency loss, smaller global contrastive loss denotes
that positive pairs are closer in feature space. This is further validated in feature space in
Fig.4. Corresponding image pairs (US and SWE modality) cluster more closely, when the
two loss functions are trained unitedly. In contrast, the two modalities in each pair get scat-
tered when trained with global contrastive loss alone. Generally, two loss terms are helpful
to each other, and consistency loss designed to align similarity distribution for anatomical
consistency promotes global representation.

Figure 3: Global contrastive loss and
consistency loss during training, when
trained alone and unitedly on Breast
US-SWE dataset.(Top: global con-
trastive loss; Bottom: consistency loss)

Figure 4: A t-SNE [30] Visualization of learned
feature embedding of US and SWE modalities
(Left: Trained with overall loss. Right: Trained
with only global contrastive loss. One fifth sam-
ples from training data.).

Analysis of Details in Anatomical Consistency For the input of the branch, we only calcu-
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Table 3: Experiment results on different technical details on Breast US-SWE dataset in
linear classification (Unit:%). Each group of experiments studies a component in the branch
of anatomical consistency, and they are compared with the adopted settings in bold.

No. Input Consistency Hierarchy Patch Num AUC Acc Prec

1 With Aug Correlation Matrix [1,2,3,4] (4,4) 89.19 81.97 80.65

Aligned Normed Correlation [1,2,3,4] (4,4) 87.62 80.99 79.38
Aligned Local Contrast [1,2,3,4] (4,4) 88.70 81.50 81.942
Aligned KL [1,2,3,4] (4,4) 88.50 81.79 81.22

Aligned Correlation Matrix [4] (4,4) 89.90 83.12 80.05
Aligned Correlation Matrix [3,4] (4,4) 89.24 81.68 77.423
Aligned Correlation Matrix [2,3,4] (4,4) 90.46 82.16 78.79

Aligned Correlation Matrix [1,2,3,4] (8,8) 89.48 81.62 79.834 Aligned Correlation Matrix [1,2,3,4] (8,8)&(4,4)∗ 89.82 82.16 78.79

Adopted Aligned Correlation Matrix [1,2,3,4] (4,4) 90.11 82.43 80.84

∗ (8,8) applied in the first two hierarchies of feature maps, and (4,4) applied in the last two. Feature maps
from the first two hierarchies are of greater sizes, thus it is natural to divide them into more patches.

late the consistency loss of Aligned feature maps without data augmentations, so we study
the impact of augmentations (With Aug). For the calculation of consistency loss, there are
some other alternatives. Normed Corr denotes that we normalize the similarity distribution
with softmax. Local Contrast performs contrastive learning on larger patches rather than
pixels in [31] for anatomical consistency, which is another alternative to give more tolerance
to fine-grained modality-specific attributes. KL means that we adopt KL-divergence to align
correlation matrix. Moreover, we also investigate some hyper parameters in this branch: hi-
erarchies of feature maps utilized in consistency loss and the number of output patches.
1) Group No.1: Adding augmented feature maps would influence model performance (de-
crease by 0.92% in AUC). Augmentations would shuffle the corresponding patches, thus
spatial similarity distribution across modalities cannot be strictly aligned.
2) Group No.2: It first shows that normalization harms model performance, because soft-
max normalization would smooth the similarity distribution, and the model may neglect
some slight similarity difference which might be non-negligible. Moreover, Local Contrast
could not achieve as good performance as ours. First of all, working on larger patches does
not pay much attention to modality-specific attributes fundamentally. Secondly, it would
only focus on discriminating a single patch from others, neglecting the general structure of
patch-wise relationships, while our proposed method could capture overall similarity distri-
bution within the entire image. We also observe that KL divergence does not perform well
to align the correlation matrix. We infer that the normalization during calculating KL diver-
gence accounts for its poor performance.
3) Group No.3: It investigates the sensitivity of feature map hierarchies. We take the fourth
(also the last) layer of the feature maps as a requirement, and investigate how different hier-
archies influence model performance. It is noted that the consistency loss propagates back
to the neural network from the layer where it is produced. To ensure the backbone network
is fully optimized, the last layer of the feature maps should be included. Table.3 shows that
with the fourth layer included in the hierarchy of the feature maps, changing hierarchies
would not significantly influence the overall performance.
4) Group No.4: For the number of output patches in feature maps, we mainly conduct ex-
periments with a patch number of 4× 4 and 8× 8. Since the computational complexity of
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similarity distribution is O(n4) for n×n output patches, we do not consider dividing the fea-
ture maps into more patches for simplicity. We observe that the number of output patches in
feature maps has little influence on the overall performance of the model.

3.4 Qualitative Results
To better demonstrate the effectiveness of the proposed method, we visualize the similarity
distribution in Fig.5. Given the same anchor(yellow), our proposed method captures better
anatomy consistency, since it obtains more consistent similarity distribution across modals.

Ours SimCLR DenseCLFFA/Color Fundus US/SWE Ours SimCLR DenseCL

Figure 5: Visualization of similarity distribution (4×4 local patches) of the given anchor.

4 Discussion
Our proposed method mainly focuses on aligned multi-modality medical data, while un-
aligned modalities are more easily accessible in some cases. For such a more challenging
problem, we could extend our work from different aspects, for example, 1) Applying self-
supervised image registration as pre-processing at input- or feature-level. 2) Using robust
contrastive learning loss in similarity distribution to relieve the noise caused by the unaligned
features. These improvements will be our future work.

5 Conclusion
In this paper, we present a novel anatomy-aware self-supervised learning method among
aligned multi-modality data. Our key idea is to capture anatomical consistency across modal-
ities, with tolerance to modality-specific attributes. Our proposed method achieves this goal
by constructing a correlation matrix to represent similarity distribution and designing a con-
sistency loss to align the distribution. Global-invariant features are also learned in a con-
trastive manner. Extensive experimental results demonstrate that our method achieves su-
perior performance to previous methods. Detailed ablation studies also validate the effec-
tiveness of aligning similarity distribution for anatomical consistency. Future work could be
extended to more general cases to unaligned medical images or natural images.
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