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Abstract

Automatic segmentation of kidney and kidney tumor areas plays an important role
in radiotherapy and clinical practice. In recent years, deep learning methods have been
widely used in the segmentation task and have achieved remarkable achievements. How-
ever, automatic segmentation of kidney and kidney tumors is still challenging due to their
diverse shapes, complex types and unpredictable locations. Inspired by the deep supervi-
sion strategy, in this paper, we propose a cascade based approach with multi-scale adver-
sarial learning and difficult supervision to address these challenges. On the whole, the
proposed method follows the typical cascade strategy, where coarse segmentation is per-
formed first and then fine segmentation is implemented. For the coarse segmentation part,
we use Res-UNet to obtain regions of interest for kidneys and masses (include tumor and
cyst). In the fine segmentation part, we propose a Multi-Scale Adversarial Learning Diffi-
culty Supervised UNet (MSALDS-UNet) as our fine-segmented network, which consists
of a segmentation network and multiple discriminators. It applies adversarial learning
strategies at multiple scales of the segmentation network to improve the final segmenta-
tion performance. This is similar to the motivation of deep supervision. In addition, we
also propose a difficult region supervised loss applied in MSALDS-UNet to utilize the
structured information to better segment hard-to-segment regions such as fuzzy bound-
aries. This proposed approach can transform multi-class segmentation tasks into multiple
simple binary segmentation problems. A thorough validation on the dataset provided by
the 2021 Kidney and Kidney Tumor Segmentation Challenge (KiTS21) shows that our
model achieves satisfactory results in kidney and kidney tumor segmentation.
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1 Introduction
Kidney cancer is a major urinary system disease worldwide[12]. Kidney tumors have differ-
ent shapes, complex types and unpredictable locations. It is still difficult for radiologists and
surgeons to manually segment the kidney and its masses. Semantic segmentation of kidney
and tumor tissue is the promising first step toward treatment outcomes improving[6, 14, 27].
Currently, medical imaging technologies such as computed tomography (CT) are widely
used in tumor-related research. It is of great significance to predict the location, shape, be-
nign, and malignant of kidney tumors through deep learning methods. The accuracy of the
existing deep learning methods for kidney segmentation is very close to the expert level, but
there is still a certain gap between the segmentation of tumors and the expert segmentation.
Due to the large variation in size, location, confused intensity, and texture of kidney tumors,
small tumors are difficult to distinguish from normal tissues, and accurate segmentation of
kidney tumors remains a challenging task.

The traditional method of manually segmenting tumors is not only time-consuming and
labor-intensive, but also has unsatisfactory clinical application results [18, 19]. Recent de-
velopments in deep learning have greatly facilitated state-of-the-art segmentation methods
[17, 23] and have achieved great success in the field of tumor segmentation. In the tumor
segmentation task, there are two main methods based on deep learning: one-stage and two-
stage methods. One-stage methods [9, 21, 24] directly perform multi-classification tasks,
obtaining multiple objects from the entire image. Oktay et al. [21] proposed the Attention
U-Net, which used a novel attention gate (AG) model for medical imaging. Guo et al. [9]
proposed an end-to-end model named RAU-Net, which was based on the Attention U-Net
and replaced all convolutional blocks of U-Net with residual blocks. Two-stage methods
[3, 7, 15, 29] mostly adopt the cascade design idea. These methods locate the region of in-
terest in the first stage, then crop the region of interest, and use the region of interest to further
segment the target. A two-stage cascade network was proposed by Lin et al. [15] which em-
ployed a cascaded framework and was designed to decompose the four-class segmentation
problem into two segmentation subtasks. George, Y. [7] presented a coarse-to-fine cascaded
network based on 3D U-Net architecture, which was first trained on the downsampled CT
volumes and then on the full resolution images.

Many specific segmentation models have also been extensively studied in tumor seg-
mentation tasks. UNet [23] is a semantic segmentation network based on FCN [17]. Its
U-shaped structure effectively combines high-level and low-level features in the network ar-
chitecture, and is very suitable for medical image segmentation. The proposed of GAN [8]
draw great attention with several improvements in implementation [1, 2, 22]. Adversarial
learning methods have become especially popular in medical imaging segmentation. Nie et
al. [20] proposed a difficulty-aware deep segmentation network with confidence learning for
end-to-end segmentation. Cirillo et al. [4] proposed Vox2Vox which was a 3D volume-to-
volume generative adversarial network for segmentation of brain tumors.

Besides the network models mentioned above, these models use many mechanisms to
improve segmentation performance, such as multi-scale analysis, attention mechanisms, etc.
Multi-scale analysis is also widely used in medical image segmentation [5, 26] because of
the use of both large-scale and small-scale features. In medical image segmentation, the ir-
regular distribution of medical images often leads to the easy-to-segment sample dominance
phenomenon. To prevent the vast number of easy samples from overwhelming the networks
during training, Lin et al. [16] proposed focal loss for detection and achieved promising
results. However, the focus loss may ignore the structural information of the samples, be-
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cause the focus loss only uses the predicted probability as an evaluation metric of difficulty
or ease. Nie et al. [20] proposed difficulty-aware attention mechanism to solve this problem.
Encouraged by this, we propose a new difficult region supervision loss function to supervise
difficult-to-segment regions at different scales.

2 Methods

Figure 1 shows the workflow of our proposed segmentation algorithm. Our method is di-
vided into a coarse segmentation part and a fine segmentation part. The coarse segmenta-
tion part uses Res-UNet [28] for segmentation, which provides localization of kidney and
mass regions for fine segmentation. The fine segmentation part uses a cascade method, and
each level contains a multi-scale adversarial learning difficulty supervised UNet (MSALDS-
UNet). This proposed network combines the multi-scale adversarial learning strategy and the
difficult-to-segmentation region information provided by confidence maps to finely segment
kidneys, masses, and tumors in turn. Among them, the tumor is further subdivided based on
the segmentation of the mass. Below we describe our implementation details.

MSALDS-UNet：segmentation kidney 

MSALDS-UNet：segmentation mass 

MSALDS-UNet：segmentation tumor 

Fine segmentation
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Figure 1: Architectural illustration of our proposed framework

2.1 Coarse segmentation

Usually, the kidney occupies only a small part of the whole CT image, while the mass and
tumor are relatively smaller, and their segmentation is easily missed by irrelevant tissues.
Furthermore, class imbalance makes it extremely difficult to identify and segment of whole
kidney. Considering that kidney tumors are always included in the mass, and the mass is
generally included in the kidney, it is feasible to first roughly locate the kidney and mass,
then crop the region of interest, and then use the region of interest for fine segmentation. In
this part, we use Res-UNet [28] to accomplish our task. The existing studies show that the
coarse segmentation is necessary, it can remove unnecessary parts, retain specific areas and
reduce background interference.
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2.2 Fine segmentation
In this section, we first describe our cascade method, then describe our proposed MSALDS-
UNet module, and finally introduce the loss function.

Cascade segmentation. To overcome the problem of sample imbalance during kidney,
mass and tumor segmentation, we use a cascaded segmentation method to transform multi-
classification problem into some binary-classification problems. Because in the multivariate
segmentation, the cyst area consists of only a few pixels. However, in the binary segmen-
tation, we consider the area of mass and tumor. The pixels of objects and backgrounds are
nearly balanced in the ROI. Specifically, we use a three-level cascade. In the first and second
layers, the regions of interest of the kidney and the mass obtained by the coarse segmenta-
tion are used as the input of the fine segmentation model to segment the kidney and the mass
respectively. On the segmentation results of the second layer, the region of interest of the
mass is cropped and used as the input of the fine segmentation model to further segment the
tumor.

Discriminator Network
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Figure 2: The overall architecture of our proposed MSALDS-UNet. The segmentation net-
work is on the left, and the discriminator network is used on the right to perform multi-scale
adversarial learning at each decoding layer of the segmentation network and supervise diffi-
cult regions.

MSALDS-UNet approach. As shown in Figure 2, our MSALDS-UNet adds a discrim-
inator to each decoding layer of the segmented network to carry out adversarial learning
at multiple scales of the segmented network. This is different from the traditional genera-
tive adversarial network that only carries out adversarial learning at the last layer. We use
enhanced UNet as our segmentation network. Specifically, we replace the convolutional
layers in UNet with residual modules [10], and apply dilated residual modules [30] in the
intermedia layers between encoder and decoder to expand the receptive field and capture
multi-scale contextual information. The SEAttention [11] is added to the encoding layer. It
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uses the squeeze operation to perform feature compression in the spatial dimension to obtain
a 1×1×C channel description with global receptive field, and then uses the excitation opera-
tion to learn the degree of dependence on each channel and adjust the feature map according
to the different degree of dependence. This realize the enhancement of important features
and the weakening of unimportant features.

To save memory, the discriminator network is a simplified version of UNet, keeping only
one convolution layer at each stage and halving the number of feature maps in the convolu-
tion layers of the entire network. Different from traditional generative adversarial networks,
the discriminator only outputs probability of an input image belonging to be the real [25],
and its output is also called a confidence map, which provide structural information to reg-
ularize the output of the segmentation network [13]. Otherwise, the feature map obtained
by each decoding layer of the segmentation network and the real label are spliced with the
original image respectively. They are sent to the discriminator in turn, and then the discrimi-
nator outputs spatial probability maps (confidence maps) with a size of H×W×1. Each pixel
of the discriminator outputs map represents whether that pixel is sampled from the ground
truth label (p = 1) or from the segmentation network (p = 0).

Difficult area supervision. Due to the irregular shape and small size of kidney tumors,
the grayscale of kidney tumors is similar to that of the surrounding tissues and organs, and
the accurate segmentation of their boundary regions has always been a challenging difficulty
and a hot spot in the world. Boundary regions are difficult regions that are difficult to seg-
ment in kidney tumors, and the confidence map output by the discriminator in adversarial
learning provides the confidence of correctly segmenting each local region. This information
is invaluable for helping us to segment difficult regions. More importantly, the confidence
maps contains information from the original input image and the predicted probability mask.
It can provide structural information of easy or difficult regions. To this end, we propose a
hard region supervision loss using the predicted probability mask and confidence map, which
is shown in Eq. (1):

Ldce = λLce(Y,P) (1)

where Y is the real mask, P is the output of the decoding layer of the segmentation network.
λ as the spatial weight, it is multiplied by the cross-entropy loss Lce to supervise the difficult-
to-segment areas, that is, the weight of the difficult-to-segment area is large, and the weight
of the easy-to-segment area is small. It consists of the absolute and squared errors of the
ground-truth probability mask and the confidence map. It is defined as shown in Eq. (2):

λ = (1−M)2 + |1−M| (2)

where M is the confidence map, and 1−M is the difficulty of the segmentation of each pixel,
and the larger the value, the more difficult the segmentation. Inspired by the L1 loss and the
L2 loss, we propose a difficult region supervision parameter λ in the hope of improving the
supervision of difficult regions.

Loss function. In the segmentation network, we use a multi-task loss function as the
training loss, and each decoding layer has a segmentation loss Lseg, which is defined below:

Lseg = Ldice +Ldce +λ1Ladv (3)

where Ldice, Ldce, Ladv denote the dice loss, the difficult region supervision loss, and the
adversarial loss. λ1 is the scale factor of the adversarial learning regularization term, it usu-
ally takes a very small value, in our experiments its value is 0.05 derived from experimental
experience.
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We also adopt the adversarial learning through the adversarial loss Ladv, defined as:

Ladv(X) = Lbce(D(S(X)),1) (4)

where X is the input image, S is the segmentation network, and D is the discriminator. By
adversarial loss, the segmentation network S generates segmentation that are closer to the
ground truth to fool the discriminator.

To train the discriminator network, we use a binary cross-entropy loss, defined as:

LD =
1
2
(Lbce(D(X ,P),0)+Lbce(D(X ,Y ),1)) (5)

It worth noting that, we change from the traditional supervised segmentation network
with only one scale to supervised segmentation network with multiple scales, so each decod-
ing layer needs a loss.

3 Experiments

3.1 Datasets and Evaluation Metrics
To evaluate our proposed method, we conduct rich contrast experiments and ablation experi-
ments on the dataset of KiTS211(KiTS21). It contains 300 annotated cases of abdominal CT
scans with annotated regions including kidneys, tumors, and cysts. Our segmentation tasks
are to segment kidney, kidney masses (tumor + cyst), and tumor from abdominal CT im-
ages. It is worth noting that KiTS21 officially provides a separate binary annotation for each
region and an aggregation of cyst and tumor annotated regions (i.e., masses), which allows
us to directly use the officially provided data without special processing. Furthermore, we
quantitatively evaluate the segmentation results using evaluation metrics commonly used in
medical image segmentation tasks, including Dice Similarity Coefficient (DSC) and Jaccard
Similarity Coefficient (JC).

3.2 Pre-processing and Post-processing
Our data pre-processing includes three steps of normalization, resampling and data augmen-
tation. We adjust the CT scan to a window width of 540 and a window level of 140, and
normalize it to [0, 255], and then convert the 3D image into a 2D PNG format slice accord-
ing to the cross-sectional direction, finally resize all slices to [128, 128]. During training, we
use different angles of rotation, horizontal and vertical mirroring, and add random salt and
pepper noise and Gaussian noise for data augmentation.

For post-processing, we first concatenate the segmentation masks obtained from each
cascade part to obtain a complete three-category segmentation mask, then resize the three-
category segmentation mask to the original CT image size, and finally integrate the resized
segmentation mask into the original image to get the final displayed segmentation result.

3.3 Training and Implementation Details
All our experiments are based on Python 3.7, PyTorch 1.7.1, and Ubuntu 20.04 LTS, and are
performed under the hardware conditions of AMDő Ryzen 9 9500x 12-core processor and

1https://kits21.kits-challenge.org/
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NVIDIA GeForce RTX 3090 graphics card. We divide the dataset into training, validation
and test sets in a ratio of 8:1:1. All models are trained from scratch using the Adam opti-
mizer with an initial learning rate of 0.0001, and the learning rate during training is adjusted
according to Eq.(6)

lr = lr0 × γ
last_epoch
step_size (6)

where the step_size represents the step size of the learning rate update, which is updated
every step_size epoch (1 in our experiments). γ represents the decay rate of the learning
rate, after each step_size epochs (0.1 in our case), the learning rate becomes lr ∗ γ . After
last_epoch epochs, the learning rate reverts to the initial learning rate.

We record the training loss and validation loss for each epoch during the training process,
and define the maximum number of iterations as 200 epochs. After every 50 epochs, we save
the model parameters, and save the model with the smallest validation loss as the optimal
model. All our experimental results are based on the reasoning of this optimal model on the
test set.

4 Experiment Results

4.1 Comparisons with state-of-the-art methods
To further demonstrate the superiority of our proposed algorithm, we compare it with several
other state-of-the-art segmentation methods on the KiTS21 dataset. The compared methods
and quantitative analysis results are shown in Table 1. It can be found that all methods have
higher scores on kidneys. However, due to the smaller size and different shapes of tumors
and cysts, the DSC and JC scores of both masses (tumor + cyst) and tumors are significantly
lower than those of kidneys. While as shown in Table 1 (the best result are shown in bold),
our proposed method achieves the best DSC and JC values in the segmentation of kidneys,
masses, and tumors. And our method outperforms other methods by about 2% and 3%
(RAU-Net) on the DSC scores of masses and tumors. This shows the superiority of our
method in masses and tumors segmentation.

Method DSC JC
kidney masses tumor kidney masses tumor

Vox2Vox [4] 0.8970 0.6945 0.7464 0.8309 0.5942 0.6502
Lin et al. [15] 0.9211 0.6772 0.6927 0.8781 0.5883 0.6035

George et al. [7] 0.9425 0.6783 0.7780 0.9008 0.5873 0.6863
Res-UNet [28] 0.9233 0.7617 0.7819 0.8763 0.6768 0.6985
Nie et al. [20] 0.9566 0.7856 0.7923 0.9237 0.7048 0.7109

Attention-UNet [21] 0.9469 0.8235 0.8341 0.9103 0.7455 0.7584
RAU-Net [9] 0.9504 0.8284 0.8409 0.9138 0.7510 0.7655

Ours 0.9610 0.8449 0.8746 0.9278 0.7714 0.8051

Table 1: Quantitative comparison between our proposed method and other state-of-the-art
methods on the KiTS21 testing dataset.

Figure 3 presents the violin plots to shows the data distribution of DSC and JC scores.
The thin line in the middle of each violin plot represents the data range, and the data beyond
the thin line is the outlier. The black box inside the violin body shows the interquartile range
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of the data, and the white point inside the black box is the median. The width of the violin
body represents the probability density of the data distribution at that point, and the wider
the width, the denser the data distribution at that point. As can be seen from the figure 3,
the median of our method leads both under the DSC and JC evaluation metrics. At the same
time, the results obtained by our method show a more concentrated data distribution with
significantly fewer outliers than other methods. This shows that our method has stronger
stability while obtaining more accurate segmentation results, and has more advantages for
the segmentation of difficult samples.

Dice

JC

kidney masses tumor

Figure 3: Violin plots obtained by different segmentation methods on the test set. a-h corre-
spond to the methods in Table 1 one-to-one (the order from top to bottom).

Figure 4 shows the visualization results of samples under different segmentation meth-
ods. We select four different patients in the test set for comparison to show more intuitive
segmentation results. It can be seen from the figure that all methods have achieved rela-
tively good results in the segmentation of kidneys, but in the segmentation of masses and
tumors, some methods have the phenomenon of under-segmentation or over-segmentation,
especially in the boundary area. In contrast, our segmentation results are closer to the real
labels, and the segmentation of boundary regions is better.

4.2 Ablation experiment

To demonstrate the performance of the proposed method and illustrate the relevance of the
different modules, in this section, we performe ablation studies on the KiTS21 dataset. Table
2 shows the results of ablation experiments of our proposed method on the KiTS21 dataset
and highlights the impact of each component applied to the model. We sequentially validate
the effects of coarse-to-fine structure, multi-scale adversarial learning and difficult super-
vised loss on the model. "Without coarse segmentation" means that only fine segmentation
is used instead of coarse segmentation. It is used to verify the influence of coarse to fine
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Figure 4: Example of kidney, masses and tumor segmentation results of our method and
other methods on the test dataset. The red, blue and green areas represent kidneys, tumors
and cysts, respectively. (a)-(h) correspond to the methods in Table 1 one-to-one (the order
from top to bottom), the (i) represents the ground truth.

structure on the model. Baseline represents the use of coarse segmentation, and in fine seg-
mentation, the discriminator is only used in the last layer of the segmentation network. This
structure is also the structure of the traditional GAN. "MSAL" is multi-scale adversarial
learning. "Baseline+MSAL" is based on Baseline, adding discriminators to other decoding
layers, and performing adversarial learning on multiple scales. "Baseline + MSAL + DS" is
our proposed method, where DS is our proposed difficult regions supervision mechanism.

Method DSC JC
kidney masses tumor kidney masses tumor

Without Coarse segmentation 0.9567 0.7983 0.8352 0.9225 0.7139 0.7572
Baseline 0.9618 0.8151 0.8511 0.9299 0.7384 0.7786

Baseline + MSAL 0.9620 0.8370 0.8620 0.9307 0.7648 0.7916
Baseline + MSAL + DS(Ours) 0.9610 0.8449 0.8746 0.9278 0.7714 0.8051

Table 2: Values of DSC and JC in ablation experiments.

It can be seen from the Table 2 that the segmentation results of masses and tumors are
significantly improved after using coarse segmentation (the best result are shown in bold). In
addition, after introducing multi-scale adversarial learning(MSAL), the DSC scores of our
proposed method for kidney, masses, and tumor are 0.9620, 0.8370, and 0.8620, respectively.
And the DSC scores for kidney, masses, and tumor after introducing difficult region supervi-
sion loss(DS) are 0.9610, 0.8449, and 0.8746, respectively. As a result, it can be found that
the segmentation effects of masses and tumor have been improved to varying degrees under
the condition that the kidney segmentation effect is not very different.

5 Conclusions
In this paper, we propose a cascade approach based on multi-scale adversarial learning and
difficult supervision to obtain accurate segmentation of kidney and kidney tumor. Specif-
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ically, we use the cascade strategy to first roughly segment the kidney and mass regions,
and then refine them based on MSALDS-UNet. In the fine segmentation, the multi-class
segmentation problem is transformed into three simple binary segmentation problems to al-
leviate the problem of sample imbalance and reduce computation. Importantly, we propose
a refine segmentation method named MSALDS-UNet, which uses a multi-scale adversarial
learning strategy to better train the segmentation network and obtain more accurate segmen-
tation results by using multi-scale information and adversarial learning. On this basis, we
propose a difficult region supervision loss, which uses structured information to improve the
segmentation effect on difficult-to-segment regions such as boundary regions. A limitation
of this study is that we segment the tumor in the mass, and the mass minus the tumor is the
cyst. If the tumor segmentation error is large, the segmentation error for the cyst will also
increase accordingly. However, compared to directly segmenting cysts with extremely im-
balanced samples, our method can achieve much better segmentation results. Experimental
results demonstrate that our method provides an accurate and robust solution for kidney and
kidney tumor segmentation compared the state-or-the-art.
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