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Abstract

Water quality monitoring is indispensable for safeguarding human health. One aspect
of water quality is turbidity, the measurement of which typically involves on-site water
sampling and laboratory analysis, which may be both costly and labour-intensive in the
context of developing countries. Alternative portable devices have been developed but
they are often inconvenient and require technical expertise. In recent years, smartphone-
based solutions have been developed with the aim of bringing turbidimeters to the wider
population. However, they rely on additional equipment to create enclosed environments
for the sample and the camera to remove ambient light. Therefore, turbidimeters in
general require either technical expertise or additional equipment, which has limited their
usage, especially in developing countries, where they are most needed.

In this paper we introduce a new benchmark with a new task for computer vision
that aims at estimating a blur of a pattern observed through a liquid. We propose and
evaluate an approach for measuring water turbidity from a picture taken by a smartphone
camera without any additional equipment. We design a simple protocol for taking a
picture of a water sample that allows to estimate its turbidity, collect a dataset and design
a benchmark for measuring the performance of computer vision methods in this task.
Our model is able to accurately determine turbidity in the range of 0 - 40 NTU.

1 Introduction

Water is essential for the survival of humans, especially considering that the human body
is about two-thirds water and it is used in most everyday activities [4] [12]. Not only is it
important to have access to a water supply, but it is critical to ensure that it is also clean and
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safe. For this, water quality monitoring is an indispensable step. One of the ways to measure
this is by using turbidity, which is “a measure of the relative clarity of a liquid”[27].

Globally, one out of three people does not have access to safe drinking water [24]. While
developed countries, like the UK, have strict regulations around the maximum turbidity lev-
els [1], many developing nations fail to comply with the regulations and lack sufficient water
sanitation infrastructures [7] [18]. However, the importance of water having low turbidity
values is even more relevant, as poor sanitation and hygiene, contaminated water sources,
and the overall poor quality of drinking water lead to disease and death amongst people of
all ages [27].

Traditionally, turbidity measurements have involved on-site water sample collection and
subsequent laboratory analysis, which is both labour-intensive and costly [22] [23]. There
are alternative portable devices to test turbidity, but they require technical expertise due to
the hazard of the standard preparation. In recent years, there has been a development of
smartphone-based turbidimeters, but most of the solutions require additional equipment to
create dark and closed environments to isolate the water sample from ambient light. There-
fore, most of the alternatives require either technical expertise or additional equipment,
which prevents ordinary users from monitoring turbidity.

In this paper we introduce a new task of water turbidity estimation with new data set, new
benchmark and baseline results. We demonstrate that turbidity can be determined using only
a smartphone camera. The user can take a picture of their water sample, and then, using a
CNN network, predict the turbidity level. This solution is simple and can be widely accessed
when considering that nearly 63% of the global population has access to a smartphone [28],
with this number increasing annually. The contributions of this paper can be summarized as
follows. We introduce a new task and a benchmark for estimating turbidity of a liquid. We
propose a new approach for measuring the amount of blur in an image, based on an automatic
preprocessing pipeline and a CNN model. We make available a new dataset with different
characteristics and challenges. We provide an extensive evaluation and high accuracy results
demonstrating that turbidity can be determined using only a smartphone-camera and a simple
CNN architecture.

2 Related Work
In this section we first define the turbidity and discuss its usefulness is estimating the quality
of water. We then review various methods for estimating turbidity.

2.1 Turbidity
Turbidity is a "measure of the relative clarity of a liquid" [27]. It detects the scattering
or attenuation of light from a variety of sources. Turbidity is measured in Nephelometric
Turbidity Units (NTU) [25]. The WHO has established that the turbidity of drinkable water
should be no higher than 5 NTU and, ideally, lower than 1 NTU [25].

Turbidity has both water safety and aesthetic implications. It indicates the presence of
suspended particulate matter (SPM) and other light-absorbing materials [5] that affect the
transmission of a light beam in the water sample [9]. High turbidity represents a health
concern, as it means that the water might contain particles that should not be consumed
by humans, such as harmful pathogens like bacteria, which can affect human health and
cause diseases[27]. It is important to note that high turbidity does not necessarily represent
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a direct threat to people’s health [25], as well as low turbidity cannot be used as a complete
guarantee of safe drinkable water. Nevertheless, turbidity is an extremely useful indicator
that can provide valuable information about the quality of water quickly and on an ongoing
basis in both small and large-scale drinking water treatment plants [25].

Other potential applications for estimating turbidity are around underwater computer
vision [14], to remove turbidity for optical imaging [11], to acquire marine information
using underwater imaging systems [8]. There are also attempts of improving early detection
of neonatal sepsis by estimating turbidity in the blood serums of newborns [3]. In addition,
there are applications for smart appliances where measuring turbidity allows to determine
the amount of soil in clothes or dishes and “adapts the machine to save water, time, and
energy, while providing superior cleaning performance” [10].

2.2 Related Papers
The related papers can be divided according to their relevance to the application, smartphone-
based solutions for water quality monitoring, and to the blurring caused in the images by
turbidity.

2.2.1 Application Related

While there are multiple smartphone-based methods for measuring the turbidity of water
samples, common to most is the need for external equipment to isolate the water sample
from ambient light. Even when some solutions could still be considerate cost-effective, the
need for additional equipment limits access of these turbidimeters to the wider population.
Surface Tension. CapCam [30] is the only work that did not involve additional equipment
other than a smartphone. The phone is placed on top of a paper cup with water. Using
the smartphone’s vibrations, capillary waves are generated. A picture with flash captures
bright-and-dark patterns that can be seen at the bottom of the container, from which the
surface tension of the water can be calculated. The inverse relationship between surface
tension and water contamination allows to determine the contamination values [30]. Note
that while turbidity and water contamination are not proportional to each other, an increase
in turbidity can often indicate water contamination[25]. The model achieves high accuracy
when pollution is caused by organic compounds, but it cannot sense inorganic contamination
as it does not change surface tension. Also, the container needs to have a flat bottom, be light
to vibrates, and circular. The model cannot work with non-transparent or coloured water.
Mie-scattering Principle. This is an optical approach based on the Mie-scattering principle
where the light beam from an IR source hits a water sample. The scattered flux from this
medium is monitored at a right angle to the direction of the incident beam by the smartphone
IR detector. The irradiance of the scattered beam depends on the concentration of the µ-
particles, which reflects turbidity. The smartphone and the water sample are held in a nylon
plastic holder. It can measure turbidity in a wide range of 0 to 400 NTU and works for
coloured mediums, except red, as this one affects the IR-detector response [15].
Mean Greyscale Index. A dark dark box was used in [26] and [13] to hold the water sam-
ples and capturing images, which are then converted into greyscale to calculate their mean
greyscale index (MGI) assuming there is a linear relationship between MGI and turbidity.
Similarly, [2] and [19] created smartphone attachments that contain optical fibers. These are
used to transmit the collected scattered light to the camera sensor. From there, the light inten-
sity of the spectrum is determined, and assuming the same linear MGI relationship, turbidity
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is estimated.
Colorimetric. Smartphone based estimation of water quality with a colorimetric method
was proposed in [20]. Using a colour matching algorithm, the concentration level of each
solution is calculated. The algorithm is limited by the training set, but it does not give
accurate results in untrained samples [20].

2.2.2 Blurring and Deblurring

Water turbidity can be seen in images as blur [16]. Focusing on the blur as being uniform
or Gaussian, [16] combines local and global features to estimate and reduce the blur. For
non-uniform image blur, [6] segments the image into regions with homogeneous blur. Local
blur estimators are applied using logistic regression and combined into a global estimate.
Similarly, following a segmentation approach, the paper [29] uses a CNN and a GRNN to
determine the image blur of each patch. The CNN determines the blur type, used by GRNN
to determine the blur parameters. The approaches mentioned above were designed for land
scenes. Another relevant area is underwater imaging, where deblurring of images poses its
own challenge. A GAN with two encoder-decoder nets is used in [21] to improve image
quality but it does not explicitly estimate the blur. Another form of enhancing by deblurring
of images is by using a gradient guided filter in [17].

3 Method
In this section, we discuss the collection of data samples, the preprocessing pipeline and the
proposed approach to estimating water turbidity.

3.1 Dataset Collection
Despite broad interest and diversity of applications that require estimating water turbidity
there are no publicly available datasets for this task. To maximise the range of potential
applications we collect the data using a smartphone camera, i.e., without any additional
equipment. However a blur can only be observed on a non uniform background, we therefore
design a simple pattern that allows to accurately estimate the blur.

We captured with a Samsung Galaxy Ultra S21 at a resolution for RGB of 3000x4000
in JPG. The camera was set to Pro Mode such that HDR, white balance, autofocus, flash,
and magnification were deactivated to control focus and exposure conditions manually. All
camera settings are kept fixed to minimize in-camera image processing that may affect the
observed blur such as 1x zoom with fixed focus, no flash, ISO 50, shutter 1/15-1/30, exposure
compensation, and white balance 3500K. The data, both train and test, is captured at high
resolution to avoid introducing additional blur, to assure focus from a fixed distance and
sufficient size of the cropped image sample that is used as an input to CNN. The samples
were taken indoors. The water with different turbidity levels was created synthetically by
combining various concentrations of formazine and kaolin clay with RO water. Colour could
also be added on top of the formazine or kaolin clay solutions. We set the range between 0
and 40 NTU, which is the common range for drinkable water turbidimeters. Drinkable water
should be below 5 NTU but ideally lower than 1 NTU, we use more levels within the safe
drinking water range. Note that the difference in turbidity below 5 is not visible to a naked
eye. The samples were collected for different containers including a 2.6cm tall glass vial that
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holds 20mL of water, a plastic darkly tinted Coca-Cola bottle or a clear plastic bottle, with
90mL of water. On the back of the container, a reference black on white pattern was placed
to provide evidence of blur. This pattern was a circle of 3cm of diameter, referred to as the
“dot”, or “text”, which was printed text of the common English pangram “A quick brown fox
jumps over the lazy dog” in Helvetica of size 5. The dot can be easily drawn and a printed
text can be extracted from newspapers, for example.

The water container was placed 10cm away from the camera to allow the full container
and some white background to be seen in the images. One sets of images were taken using a
tripod and voice recognition to trigger the capture. The images were annotated manually us-
ing the turbidity value from a compact turbidity meters instrument (CT12 model) [Palintest,
UK].

Figure 1: Three dataset collection set-ups. Left: glass container, tripod and indoors. Middle:
plastic bottle, tripod and indoors. Right: window, handheld smartphone and plastic bottle.

To create a more challenging dataset, the lighting and the handheld phone position were
varied. The setting was moved next to the window to simulate the picture taken outside.
Additionally, instead of using a tripod with a fixed position, the phone was handheld. Figure
1 shows the pattern and the data capturing setup.

3.2 Dataset Overview

Table 1 shows the main variations between each of the datasets and the total number of
images after the preprocessing pipeline. The images used for training are 244x244 pixels
for all datasets except the text dataset, which is 200x200 pixels. The total number of im-
ages are spread across eight different turbidity levels: 0, 1, 2.5, 4, 5, 7.5, 10 and 40 NTU.
The number of images for each turbidity level are: turbidity(#images), 0(1816), 0.5(1305),
1(1616), 2(1822), 4(1806), 5(1812), 7.5(1812), 10(1828), 40(1584). We also added an addi-
tional class of 0.5 NTU in the formazine dataset to test the limits of the model. We refer to
these two sets as 8 NTU and 9 NTU in the experiments. The results are reported of 8 NTU
levels, without 0.5, unless specified otherwise. The noise of the labels is up to 10% and it is
caused by limited accuracy in preparing the concentration of the stock solution, for example
20 NTU is in fact in range 18-22 NTU.
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Dataset Formazine Kaolin Clay Text Plastic Yellow Natural Natural Clear
1.Solution F KC F F KC F F

2.Container Glass Glass Glass Plastic Glass Plastic Clear Plastic
3.Background Dot Dot Text Dot Dot Dot Dot

4.Colour Clear Clear Clear Clear MO Clear Clear
5.Light Lab Lab Lab Lab Lab Window Window

6.Tripod Yes Yes Yes Yes Yes No No
#Images 15397 2149 2522 1256 5879 1224 1228

Table 1: Datasets collected. The solutions are represented by formazine (F) and kaolin clay
(KC). Methyl orange (MO) produces a yellow water colour. For illumination, Lab represents
the pictures taken under fluorescent light and window for pictures taken next to the window
to represent natural light. Plastic indicates a tinted Coca-Cola plastic bottle unless specified
otherwise e.g. clear plastic.

Water turbidity is measured by its transparency, and we estimate NTU by measuring the
amount of blur in the background. A background with a step edge between black and white,
such as in a black dot or printed text, allow to observe a blur in case the water is not perfectly
transparent. A blur can be also produced by a convolution of a step edge with a Gaussian
kernel, the size of which determines the resulting amount of blur on the edge. In fact, an
experiment on a synthetic data with blur from a Gaussian kernel showed nearly perfect NTU
prediction by our approach. Using a step edge makes it robust to the absolute values of black
and white as well as the contrast and colour, thus illumination conditions. For the data with
the dot background, the images are centred on the dot, which is aligned with the centre of the
container as this is the area with the least distortions from the container. From each original
image, two image crops are extracted: one centred on the upper edge of the dot, and another,
symmetric with the lower edge of the dot. For the text background, two final crops per each
original image were extracted i.e., containing text: The quick brown fox and the second one
with jumps over the lazy dog.

Figure 2: Cropped pictures from the different datasets. The F and KC datasets are reflected
by the dot in glass vial. The plastic picture represents the plastic, natural or natural clear
datasets.
Formazine dataset represents the most controlled conditions and least noise from external
factors such as container and illumination.
Kaolin Clay dataset was created using a solution of inorganic suspended solids. KC particles
reflect light, therefore the blur in the images is more difficult to measure in images.
Text dataset explores the performance of the model by using a different background that
inludes many small edges.
Plastic dataset increases the complexity due to a plastic Coca-Cola bottle of 500mL. It has a
non-covex shape, it is tinted and requires a larger amount of water. However, this container
is widely available in most geographic locations.
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Yellow dataset was obtained from different turbidity concentrations mixed with methyl or-
ange in 1, 2.5 and 5 PPM to generate various intensities of coloured water.
Natural dateset represents more “natural” lighting conditions with images taken by a win-
dow. A tinted Coca-Cola water bottle was used.
Natural Clear dataset is also in natural light, except the plastic Coca-Cola bottle was clear.

WaTur: Our collected Water Turbidity dataset is available online1.

3.3 Preprocessing
The aim of the preprocessing pipeline was to remove the unnecessary elements of the origi-
nal image and create smaller images that focus only on the parts where the blur is best seen
i.e., dot or text. To create a pipeline robust to the movements of the water container and
background, the process had to be able to detect the dot from the original image and then
crop around it. a) The bottom of the image is cropped to remove the “feet” of the container.
b) brightness is enhanced to increased the contrast between the black dot and the rest of the
image. c) morphological operations: opening (erosion + dilatation) and closing (inverse of
opening, dilatation + erosion) are performed to find the actual shape and size of the back-
ground. d) As the black contours are detected, the next step is to filter according to area and
perimeter for the dot background. For the text background, no filtering is done and the con-
tours are simply merged due to the differences in the letter’s shape. e) The filtered contours
are enclosed in a rectangle that fits tightly to the required shape. 100 pixels are added to each
of the sides to guarantee that the edges of the contours are included in the picture. f) The
images are normalised by using as the mean the centre of the black dot area, and the cropped
rectangle as the variance of the image. g) the cropped rectangular RGB image is cropped
again into two smaller centred squares.

Figure 3: Sample pictures after preprocessing for different NTU for F dataset.

3.4 Model Architecture
We propose a small model to make the inference as efficient as possible. The architecture
consists of five convolutional layers with increasing depth (16 - 256) and each filter size is
3x3. ReLU was used as the activation function in all layers, and average pooling was used in
between each convolutional layer. We experimented with two different heads: a classification
head of the size of the number of classes and softmax on the output, and a regression head
of size one and linear output. The batch size was fixed to 32, and the training and validation
split was 80/20% within each dataset. Adam, with learning rate and decay rate of 0.001, was
used as the optimizer. The classification pipeline was trained on categorical cross-entropy
and the regression model was trained using mean squared error. We compare the two models

1https://github.com/lml418/WaTur-Water-Turbidity-Dataset

https://github.com/lml418/WaTur-Water-Turbidity-Dataset
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using the accuracy i.e., the number of correctly classified samples to the total number of
samples. For the regression model the accuracy was calculated by quantizing the real valued
prediction into the closest discrete class i.e., the same as in the classification, and comparing
to the ground truth. Root mean square error (RMSE) between the prediction and the ground

truth (gt)
√

1
N ∑(predicted −gt)2 was calculated for both problems as an additional metric.

For the classification model, the predicted label with the highest probability was selected.

4 Results

In this section an analysis on the performance of the simple CNN architecture under different
dataset will be carried.
Formazine Dataset. This first dataset had the most controlled conditions and the model
achieved high accuracy even when dealing with turbidities as small as 0.5 NTU, impossible
to differentiate naked eye, showing that the model is able to determine turbidity. Performance
drops by nearly 30% when addressing this problem as a regression task as shown in table 2.

Models #Images Acc (%) RMSE
8 NTU Classification 14092 97.48 0.0520

8 NTU Regression 14092 69.93 0.6004
9 NTU Classification 15397 97.34 0.0559

9 NTU Regression 15397 64.55 0.7470
Table 2: Results for formazine classification and regression after 10 epochs. High accuracy
and performance for both of the classification problems. Performance drops for the regres-
sion based approach.

Text Dataset. By changing the background to text, the model is still able to achieve a high
performance. Nevertheless, the accuracy is slightly lower when tested for the same number
of epochs and trained using the same number of per class examples. The blur seems to
be easier to see in the dot that in text as even when comparing both background under RO
water (equivalent to 0 NTU), the text is already blurry. Additionally, from an application
perspective it is easier to draw a dot, therefore the dot was chosen as the ideal background.

Models Dot Classification Text Classification
#Images 2522 2522
Acc (%) 96.43 93.65
RMSE 0.2046 0.4087

Table 3: Comparison for dot and text formazine classification at 40 epochs. Classification
when using the dot as background achieves slightly better performance than for text.

Kaolin Clay Dataset. Formazine (F) is representative of organic suspended solids. As the
model achieved high performance for this solution, the next step was to test the model for
inorganic suspended solids ie., Kaolin Clay (KC).
Test 1 showed that the model trained on F cannot be directly used for inference KC. This is
to be expected when considering that KC contains larger particles which reflect light so the
pictures show the difference in turbidity with lower effects. Indeed, the model was predicting
1 NTU for all KC images. Test 2 shows the results of the model trained with KC that achieves
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a good performance but slightly lower than with the formazine dataset in Table 2 as the task
is more challenging.

Test 1 Test 2
Train data Formazine Kaolin Clay
#Images 14092 2149
Acc (%) 2.93 91.16
RMSE 42.9195 0.3300

Table 4: Classification results for training on kaolin and formazine 3. Kaolin clay samples
reflect light so the model trained on formazine cannot be used. However, in test 2, the model
trained on KC can extract and learn the characteristics from kaolin clay leading to high
accuracy.

Plastic Dataset. A plastic bottle is a more ubiquitous container than a clear glass vial. This
dataset provided the following conclusions: 1) Test 1. The model trained using data samples
of the glass vial cannot be directly applied to plastic even if the other conditions are the same.
2) Test 2. The model is able to solve the dataset with high accuracy, the highest out of all the
previously tested datasets. this can be due to the fact that the glass vial has higher curvature
which introduces more noise blur noise than the larger plastic bottle. 3) Test 3. The model
performs better for the same test images when using F and KC together as the training set.
4) Test 4. The model achieves high accuracy when trained on a mixture of datasets.

Test Test 1 Test 2 Test 3 Test 4
Pictures used for training F F F & KC F & KC

Container Glass Plastic Glass Plastic & Glass
#Images 14092 1256 16040 18189
Acc (%) 11.16 99.20 20.72 96.15
RMSE 22.7563 0.2047 27.7628 0.6747

Table 5: Classification results for different solutions and containers.

Yellow Dataset. This experiment tests the model’s ability to generalise to different coloured
water. Note that, coloured water does not necessarily have higher turbidity than clear water.
From training only on clear water samples and testing on coloured water without any data
augmentations, it can be concluded that the model is unable to generalise to a different colour.
However, when trained on a mixture of clear and coloured water, the model achieves again
high performance.

Training Images Kaolin Clay Kaolin Clay + Methyl Orange
#Images 2149 5897
Acc (%) 15.60 98.05
RMSE 1046.1393 0.0964

Table 6: Results for dot kaolin clay glass vial with methyl orange. The weights of kaolin clay
for clear water cannot be directly applied to water with colouring. However, when training
in a mix of water samples, the model achieves high accuracy for clear and coloured water
samples.

3Note that the total number of images for Formazine + Kaolin has exactly 201 samples less than the sum of the
samples for each compound. This is due to the fact that the samples for 0 NTU are the same for both as they use
RO water.
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Natural Dataset. This dataset was created to see the impact of changing the conditions to
natural light and handheld smartphone instead of using a tripod as well as different plastic
bottle. The remaining conditions were the same as in the plastic dataset. As seen in table
7, the model achieves high accuracy when trained under those conditions. Performance
drops compared to the plastic dataset which can be explained by the more noise caused by
the handheld camera motion and the lighting conditions which cause more reflections and
illumination patches as the light coming from the window affected more one side of the
bottle than the other.

Dataset Natural tinted Natural clear
#Images 1224 1228
Acc (%) 95.92 99.59
RMSE 0.3188 0.0180

Table 7: Results for dot formazine plastic bottle under natural lighting conditions classifica-
tion.

5 Conclusion and Future Work
This study successfully demonstrates that water turbidity can be estimated with high accu-
racy by only using a smartphone-camera and a simple CNN architecture. Different datasets
under various lab controlled conditions were taken to evaluate the performance of the model.
A simple CNN architecture achieves high performance when trained from a sample of that
dataset for turbidity in the range between 0 to 40 NTU. We do not expect significant diver-
gence in terms of performance if the sample capturing conditions are similar. The experi-
ments were conducted in a way to reproduce field conditions as closely as possible. These
include two main types of water turbidity that are considered in civil engineering (formazine
and clay), different colours, indoor settings, natural and artificial illumination, glass and
plastic containers of different shapes, a smartphone and a simple background.

Future work include further relaxation of the controlled conditions to make the method-
ology for the data collection simpler for its exploitation in the field. Additionally, there are
possible extensions such as data augmentation or domain adaptation to improve the general-
isation properties. This project continues with collection of tap water samples in developing
countries where turbidity often exceeds 4 NTU. Other applications such as underwater im-
agery can also benefit from accurate estimation of water turbidity.

Acknowledgement. This research was jointly supported by Chist-Era, UK EPSRC project
EP/S032398/1 and the Scholarship in Commemoration of Her Royal Highness Princess Chu-
labhorn’s 60th Birthday Anniversary under HRH Princess Chulabhorn College of Medical
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