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Abstract

This paper proposes Sparse View Synthesis. This is a view synthesis problem where
the number of reference views is limited, and the baseline between target and reference
view is significant. Under these conditions, current radiance field methods fail catastroph-
ically due to inescapable artifacts such 3D floating blobs, blurring and structural dupli-
cation, whenever the number of reference views is limited, or the target view diverges
significantly from the reference views.

Advances in network architecture and loss regularisation are unable to satisfactorily
remove these artifacts. The occlusions within the scene ensure that the true contents of
these regions is simply not available to the model. In this work, we instead focus on hallu-
cinating plausible scene contents within such regions. To this end we unify radiance field
models with adversarial learning and perceptual losses. The resulting system provides up
to 60% improvement in perceptual accuracy compared to current state-of-the-art radiance
field models on this problem.

(a) Dense View Synthesis (b) Few View Synthesis (c) Sparse View Synthesis

Figure 1: Different view synthesis operating modes, with varying numbers of views and
varying baselines between views. In each case the black cameras are reference views and the
red camera is the target view. Note that with few views and a wide baseline, occluded regions
appear in the rendered scene which are visible in only 1 or none of the reference views.
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1 Introduction

Novel view synthesis (NVS) is the problem of generating new camera viewpoints of a scene,
given a fixed set of views of the same scene. Most modern NVS methods approach the
problem as that of learning a generative model for the scene, conditioned on the camera pose.
Key challenges with current NVS approaches are inferring the scene’s 3D structure given
a restricted set of reference views, which are not necessarily coplanar with the target view.
We call this the Sparse View Synthesis problem, and it raises significant challenges with the
inpainting of occluded and unseen parts of the scene. This task has wide applications in image
and video editing, Virtual Reality, or as a pre-processing step for other computer vision and
robotics tasks. This makes novel view synthesis a key problem in modern computer vision.

Recent years have seen rapid growth in this field. Most notably, neural rendering ap-
proaches like Neural Radiance Fields (NeRF) and its advancement [30, 34] have become
very popular due to their photo-realistic results. However, these approaches tend to be very
expensive, requiring a multitude of input views and a very long per-scene optimization pro-
cess to obtain high-quality radiance fields. While this can be useful for tasks such a 3D object
reconstruction for graphics design, it is far from practical and accessible for other applications
such as live event capture.

This work aims to make neural scene reconstruction more accessible and applicable to
real world scene capture. In particular we propose a method which does not require scene-
specific model training, while still providing realistic results from a small sparse set of input
views. We refer to this problem as Sparse View Synthesis. The key challenge is effectively
recognizing and handling occluded areas, which were not observed from the small number
of training views, while keeping rendering efficient. This necessitates a greater focus on
generalization and extrapolation and pure synthesis, as opposed to the data aggregation of
traditional radiance field models.

Some methods have approached this generalisation problem by reconstructing geometry
priors. Indeed models like [6, 8] attempt to replicate classic multi-view stereo behaviour
using deep learning techniques. However, these approaches have focused on narrow baseline
extrapolation, where occlusions are limited.

To be able to deal with occlusions and artefacts sensibly, we unify adversarial training
with radiance field models (fig. 1). The adversarial training paradigm was first introduced as
Generative Adversarial Networks [17]. This was designed to help enrich the output variability
of generative models, while dealing with artefacts in a realistic way. In the domain of neural
radiance fields, this has the potential to ensure realistic extrapolation in unobserved regions.
We have made our code publicly available'.

2 Background

Classical approaches to novel view synthesis (also known as Image-based rendering (IBR)
[5, 11, 31]) have typically relied on restrictive intermediate representations of geometry.
These range from multi-layer representations like Plane Sweep Volumes [14, 51], Multi-
Plane Images (MPI) [15, 56], or Layered Depth Images (LDIs) [42, 44] to more complex
voxel grids [43, 45] and 3D point clouds [49, 50]. More recently, NeRF [34] proposed an
entirely neural scene representation, where a Multi-Layer Perceptron (MLP) parameterises
a volumetric function which maps position and viewing direction to density and colour.
Unfortunately, in it’s original form NeRF is very costly to run and has to be optimised
per scene, which prevents it from being useful in many important applications. Subsequent
approaches [1, 30, 46] have tried to loosen these constraints or improve performance [19].

https://github.com/violetamenendez/svs-sparse-novel-view
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Despite this, all these approaches struggle to generalise across scenes, require dense input
images, and are very costly to run. In particular recent works have focused on introducing
additional data augmentation [7] and regularisation systems [12, 27, 38, 39] to reduce the
number of viewpoints required to build a scene-specific NeRF model.

To overcome the limitations of the scene-specific implicit representation, some approaches
have attempted to combine the geometry learning strengths of IBR approaches with the power
of neural rendering techniques. IBRNet [47] aggregates 2D feature information from source
views along a given ray to compute its final colour. SRF [8] emulates classical stereo matching
techniques by learning an ensemble of pair-wise similarities. But the results are very blurry,
cannot handle specularities, and the model is very expensive to run. PixelNeRF [53] manages
to generalise to new scenes using as few as one input image and no explicit geometry-aware
3D structures. However, it tends to overfit to the training set, failing to generalise well.On
the other hand, MVSNEeRF [6] reconstructs an encoding volume based on a 3D feature Plane
Sweep Volume [14]. This model works on only three input images and is generalisable to
different scenes. Further developments were made based on geometric constraints [23] and
recurrent aggregation [55]. However, in all these systems only the scene content visible from
the reference view is well reconstructed. The outputs contain significant artefacts in challeng-
ing or occluded regions which require further fine-tuning per scene. These techniques also
lack any mechanism to generate image content in areas which are occluded in all inputs. This
becomes a significant problem in Sparse View Synthesis problems, where the target view is
not closely aligned with the reference view.

With the development of Generative Adversarial Networks (GANSs) [17], it has become
possible to generate novel photo-realistic content [9, 10, 25, 26]. Several works have applied
adversarial methods to the controllable novel view synthesis of objects. HoloGAN [36] learns
object representations extracting 3D features from single natural images and disentangles
shape and appearance. GRAF [41] achieves disentanglement of object properties while not
requiring 3D supervision. All single-view methods base their 3D representations on a single
2D image, which suffer from single-view spatial ambiguities. Nanbo et al. [35] address
this by trying to composite multi-object scenes leveraging multiple views. GIRAFFE [37]
incorporates compositional 3D scene structure to the model to handle multi-object scenes.
Pix2NeRF [3] trained a generator system to produce random NeRF volumes which could
then be combined with a decoder for GAN inversion. GNeRF [32] uses adversarial training
to reconstruct NeRFs with unknown camera poses. pi-GAN [4] models partial single objects
using periodic activation functions. All of these models aim to disentangle image composition
for scene editing, or are limited to simple scenes comprised of one or a few simple objects.
DeVris et al. [13] decompose complex scenes in many local specialised Radiance Fields.
This requires additional depth information and extremely expensive training. Our method on
the other hand leverages adversarial training to achieve photo-realistic image generation of
unconstrained occluded areas in Sparse View Synthesis.

3 Approach

We propose a pipeline based on a Plane Sweep Volume [14] neural encoding following
MVSNEeRF [6]. From this volume we sample random patches using radiance fields [34]
which are supervised by an adversarial loss. As opposed to [34], we don’t require a dense
set of input images. We aim to learn a general model that can be applied to new unseen
scenes without fine-tuning. Our model also aims to handle significant occlusions due to
large baseline changes from sparse input viewpoints. In particular, we train a generalisable
adversarial framework for radiance fields. An overall visualisation of our proposed model
can be seen in Figure 2.


Citation
Citation
{Chen, Wang, Fan, and Wang} 2022

Citation
Citation
{Deng, Liu, Zhu, and Ramanan} 2022

Citation
Citation
{Kim, Seo, and Han} 2022

Citation
Citation
{Niemeyer, Barron, Mildenhall, Sajjadi, Geiger, and Radwan} 2022

Citation
Citation
{Rebain, Matthews, Yi, Lagun, and Tagliasacchi} 2022

Citation
Citation
{Wang, Wang, Genova, Srinivasan, Zhou, Barron, {Martin-Brualla}, Snavely, and Funkhouser} 2021

Citation
Citation
{Chibane, Bansal, Lazova, and {Pons-Moll}} 2021

Citation
Citation
{Yu, Ye, Tancik, and Kanazawa} 2021

Citation
Citation
{Chen, Xu, Zhao, Zhang, Xiang, Yu, and Su} 2021

Citation
Citation
{Flynn, Neulander, Philbin, and Snavely} 2016

Citation
Citation
{Johari, Lepoittevin, and Fleuret} 2022

Citation
Citation
{Zhang, Bi, Sunkavalli, Su, and Xu} 2022

Citation
Citation
{Goodfellow, {Pouget-Abadie}, Mirza, Xu, {Warde-Farley}, Ozair, Courville, and Bengio} 2014

Citation
Citation
{Choi, Choi, Kim, Ha, Kim, and Choo} 2018

Citation
Citation
{Choi, Uh, Yoo, and Ha} 2020

Citation
Citation
{Karras, Laine, and Aila} 2019

Citation
Citation
{Karras, Laine, Aittala, Hellsten, Lehtinen, and Aila} 2020

Citation
Citation
{{Nguyen-Phuoc}, Li, Theis, Richardt, and Yang} 2019

Citation
Citation
{Schwarz, Liao, Niemeyer, and Geiger} 2020

Citation
Citation
{Nanbo, Eastwood, and Fisher} 2020

Citation
Citation
{Niemeyer and Geiger} 2021

Citation
Citation
{Cai, Obukhov, Dai, and Vanprotect unhbox voidb@x protect penalty @M  {}Gool} 2022

Citation
Citation
{Meng, Chen, Luo, Wu, Su, Xu, He, and Yu} 2021

Citation
Citation
{Chan, Monteiro, Kellnhofer, Wu, and Wetzstein} 2021

Citation
Citation
{DeVries, Bautista, Srivastava, Taylor, and Susskind} 2021

Citation
Citation
{Flynn, Neulander, Philbin, and Snavely} 2016

Citation
Citation
{Chen, Xu, Zhao, Zhang, Xiang, Yu, and Su} 2021

Citation
Citation
{Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, and Ng} 2020

Citation
Citation
{Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, and Ng} 2020


4 MENENDEZ GONZALEZ ET AL.: SPARSE NOVEL VIEW SYNTHESIS

o
Depth regularisers

éo;) = J\/ Laist (w)

a
Ray distance

E Fﬁ\ Radiance field Volume rendering Lsmoots( [l M)
©
i 4 J & #  Image losses
@

g9-t)
© (W - g-tll

©
Encoding v nhum ! p Prediction
g .l' \ g E ©
L

Patch sampler
Input images Feature extraction Discriminator

IS}

Geometry volume generator ; A 1 e Adversarial training

Figure 2: Model overview.

Given some sparse input images our model reconstructs an embedded neural volume
which allows the model to reason about the implicit geometry of a scene. We use ray marching
to sample from this volume and render a new point of view. We leverage adversarial training
to help provide plausible rendering for large dis-occlusions and artefacts that arise from
the large baseline changes. The following sections will detail each of these elements of our
approach in turn.

3.1 Geometry volume generator

As the initial encoder for our generator, we use a 3D CNN encoding volume [6] which
integrates 2D CNN features of the input images. This allows the network to extract corre-
lations between images, which can then be used to reason about geometry. The focus on
image correlations as a mechanism for geometry extraction helps the network generalise to
previously unseen scenes. The encoding volume is created at the reference view by warp-
ing multiple sweeping planes of source view features. This is in contrast to techniques like
Deep Stereo [14], which perform plane sweeps using the raw colour pixels to produce their
correlation volume. "ow

To construct this volume, we first extract the deep features {F; | F; ¢ R4* 7 Xc}f\’: , of the
N input images {I; | I; € R¥*W>3}¥ | using a deep 2D convolutional network F; = E(I;|wg).
This network consists of downsampling convolutional layers, batch-normalization and ReLU
activation layers. For efficiency and generality, the feature encoding network is shared across
all views [52].

Next we must align each feature map {F;} to the reference view at multiple depths to
encode the plane sweep volume. To achieve this, a homography #;(d) is computed for
each view at each depth. Given the camera parameters {K;,R;,t;} (intrinsics, rotation and
translation) for camera i the homography is defined as

trer —t;) -nl,
Hi(d):Ki'Ri' <I+W) Rref Kref (1)
where I is the 3 x 3 identity matrix, n,.; the principle axis of the reference camera, and d
is the depth which the images are being warped to. This operation is differentiable, which
allows for end-to-end training of the feature encoding network weights wg based on the
downstream reconstruction losses.

Applying this homography to the feature maps gives us the warped feature sweep volumes

V,={F;-H;(d)|Vd =1,...,D}. )
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Then, a cost volume C is created by aggregating all the warped feature sweep volumes, which
encode appearance variations across views. To do this, a variance based cost metric is used,
as it allows to use an arbitrary number of input views,

Z{'\Ll (Vi —-Vi )2
e VAR 3)
N

This cost volume is then processed using a 3D CNN UNet-like network [40]. This in-
cludes downsampling and upsampling layers with skip connections, to propagate scene ap-
pearance information. The output of this network is the neural embedding volume E =
V(C|wy). This embedding volume represents the feature correlations from the point of view
of the reference frame’s plane sweep volume. The structure of this volume is consistent across
any arrangement of input viewpoints, and even any number of input views. This allows the
system to generalize to new scene arrangements.

C=Var(V;)

3.2 Volume rendering

N DAY

Ray distance’

!
OIS

Radiance field ‘Volume rendering Prediction

Patch sampler

Patch-based neural radiance field

Figure 3: Volume rendering pipeline

We next use a neural radiance MLP with parameters wg to decode the embedding volume
into volume density and view-dependent radiance (colour). Given a 3D point x, and a viewing
direction d, we optimise a network Fg to regress the density ¢ and colour r from the volume
E at that point x. To allow the correlations and structures in E to be mapped back to the
original scene albedo, we use the pixel colour of the original image inputs I as additional
conditioning information.

F®: (xadaEvl‘WQ) = (O-x,dvrx,d) (4)

We use differentiable ray marching to regress the colour of reference image pixels. This is
done by projecting (“marching”) a ray through a pixel p in the reference image I,.r. We can
use the neural radiance network to obtain the radiance ry and density oy, at regular intervals
v € [1..inf] along this ray via

(6y,ry) = Fo (tyer +vd,d,E,X|we) (5)

where d = R/, = KI ¢P- We can use these regular samples from Fg to obtain the predicted
colour of the pixel R(p) via volume rendering equation [24]:

R(p) :ZTy(l—exp (—Gy))ry (6)
Y

r—1
Ty = exp <— Z G,-) @)
j=1
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where 7y is the transmittance at sample ¥, which represents the probability that the ray travels
up to y without hitting another particle.

It is intuitive that the proposed approach will be able to predict density based on the
consistency of feature representations between views. We can even see how analysing exactly
which views correlate well for a given point can provide hints about occlusions, and guidance
for albedo lookup. However, there is no simple mechanism to distinguish a region which has
low correlation due to being empty, and one with low correlation due to being occluded in
all views. The prevalence of these fully occluded regions grows drastically as the number of
input views is reduced, and leads traditional radiance field models to produce reconstructions
full of unrealistic holes.

3.3 Adversarial training

To combat this, we couple the above Generator network with a Discriminator network and un-
dertake adversarial training. This makes it possible to enforce realism in unobserved regions.
However, effective adversarial training requires spatial structure in the generated output, there-
fore we use a patch based neural generator function based on equation 6. The use of a patch
based generator serves two purposes. Firstly, it exponentially increases the number of pos-
sible training samples, ensuring that the discriminator is not able to memorize the training
dataset. Secondly it greatly improves training efficiency as it can be expensive to repeatedly
render entire images via the Neural Radiance Field.

Following Schwarz et al. [41], we generate a variable patch that scales with training time.
This allows for a variable receptive field. The patch P, centred on pixel p of size § x § is
defined as

o 1)
P(p)s)z{(Si+ansj+py)|i7j€{_Ea“')i}} (8)

where s is the scale that controls the active field of the patch. The scale exponentially decays
during the training process, allowing our convolutional discriminator to learn independently
of the image resolution.

Figure 4: Patches. An illustration of the varying patch scale over the course
of training.

Given the ground truth patch P), for the target view, we compute the L; loss between a
randomly selected real and target patch

Lree = ||PP _P;;” where p NU([O,O], [WaH]) )

This L loss is effective at enforcing low-frequency correctness in the output. However, it can
lead to overly-blurred results and difficulty recovering high-frequency structures. We there-
fore follow an LSGAN [29] approach and augment this with a convolutional PatchGAN [21]
discriminator network Dg with parameters we.
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The discriminator network takes patches as input, and is trained to classify input patches
from the ground truth and from the generator as real or fake respectively. As such the dis-
criminator loss is defined as

Lp =|1-De (P,)[[3+]1De (Py)|[3 where p ~ 1([0,0], [W,H]). (10)

Finally, we can use the PatchGAN discriminator’s loss to also create an adversarial loss
which constrains the generator network

L= A1~ Do (P,) | where p ~1([0,0], [W, H]). )

where A is a weighting factor. This adversarial loss encourages the generator to produce
more realistic outputs which are able to fool the discriminator. Importantly, any holes in the
reconstruction due to occlusions will provide obvious clues for the discriminator. Therefore
the generator can only succeed in its task if the holes are filled with hallucinated photo-
realistic content.

We should re-iterate that this entire pipeline is fully differentiable. This includes the
discriminator, the patch based volumetric rendering, the radiance field estimation, the feature
correlation computation, the homographic plane-sweep warping and the input image feature
lookup. As such, our adversarial loss L is able to constrain all the learnable parameters
Wg, Wy, We apart from those in the discriminator wg which are optimised based on Lp. These
two optimizations are performed using separate Adam optimisers [28] which are alternated.

3.4 Depth regularisation

Because Sparse View Synthesis is an ill-defined problem, we found that the predicted depth
images were extremely noisy, if not completely nonsensical. To be able to reconstruct a
well defined scene geometry, the predicted depth needs to be coherent with the image. We
approach this issue by adding two depth regularisers.

3.4.1 Edge-aware depth smoothness

Firstly, we introduce a depth smoothness loss to encourage the network to generate continuous
surfaces, similar to monocular depth estimation approaches [16]. As depth discontinuities
usually happen at colour edges [18], the depth smoothness is weighted with the colour image
gradients J1.

1
Lomoorn (d) = 5; Y {|axd,-.,»\ e 1ll 4|9 e_Hc?yIin} (12)

i,J

where d; ; is the predicted depth at pixel (i, j), and ; ; the respective colour value.

3.4.2 Distortion loss

In addition to smooth surfaces, we also want to get rid of other potential artefacts like
“floaters” (small disconnected regions of occupied space that look fine from the input views,
but wouldn’t be coherent if seen from another view), and “background collapse” (far sur-
faces modeled as semi-transparent clouds of dense content in the foreground). NeRF-based
models [34] try to achieve this by adding Gaussian noise to the output ¢ values during opti-
misation. But this does not eliminate all geometry artefacts, and reduces the reconstruction
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quality. Instead, we follow Barron et al. [2] and include a distortion loss in our regularisation.
1
Lgis (W) :Zw,»wj+52w,2 (13)
ij i

Wi=fi(1—€xp(—6i)) (14)

where w; are the alpha compositing weights at ray sample i, derived from equation 6. This
regulariser minimises the weighted distances between all pairs of ray points, and the weighted
size of each individual point. This helps the distribution function of the density along the rays
approximates a delta function. Finally, we combine all the generator losses and regularisers
with an LPIPS [54] perceptual loss. Our total loss is as follows:

1
£t0ral = EED + EG + ﬂvrecﬁrec + Eperc + )vsmoothﬂsmaozh + Afdist Edist (15)

where we chose Ao = 20, Agnoorn = 0.4, Ayisr = 0.001 for our experiments.

4 Experimental setup

For training we are using two different commonly used datasets, DTU [22] and Forward-
Facing (LLFF) data [33]. The DTU dataset consists of a variety of scenes and objects taken
in a lab setup. We follow the same training approach in related papers [6, 53], and split the
dataset into 88 training scenes and 16 testing scenes, using an image resolution of 512 x640.
The Forward-Facing dataset consists of handheld phone captures taken in a 2D grid. We split
the dataset into 35 training sets and 8 for testing in the same scenes used for NeRF. Because
we focus on the sparse view synthesis problem, models are trained on 3 input views per scene.

4.1 Baseline models

We compare our method against the current state-of-the-art neural rendering methods for
Sparse View Synthesis. All methods are trained over LLFF and DTU using three input images.
We evaluate IBRNet [47], MVSNeRF [6] and our method over long baseline movements. We
weren’t able to train GeoNeRF [23] as the code hasn’t been released yet, and the results in
their paper are for a much easier problem.

4.2 Evaluation of accuracy

For the purpose of quantifying how well our model performs, we make use of several popular
metrics that measure different characteristics of an image. To measure image quality, we use
Peak Signal-To-Noise Ratio (PSNR) [20] and Structural SIMilarity (SSIM) [48] index. PSNR
shows the overall pixel consistency, while SSIM measures the coherence of local structures.
These metrics assume pixel-wise independence, which may assign favourable scores to per-
ceptually inaccurate results. For this reason, we also include the use of a Learned Perceptual
Image Patch Similarity (LPIPS) [54] metric, which aims to capture human perception using
deep features.

From table | we can see that our proposed approach performs similarly to RegNeRF in
terms of accuracy. This is despite the fact that RegNeRF is trained in a scene specific regime,
while our approach is trained on unrelated scenes, then applied to a completely unknown
scene at test time.

When comparing our technique against the other scene agnostic state-of-the-art approaches
(IBRNet and MVSNeRF) under the Sparse View Synthesis evaluation protocol, we note that
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Table 1: Quantitative evaluation. We evaluate our model over the DTU and For-
ward Facing datasets. Bold is best result, italic is second best.

DTU Forward facing

Model Experiment
PSNR1 SSIMtT LPIPS|PSNR{1  SSIM{  LPIPS])

RegNeRF* [38]  Optimised 18.89 0.745 0.190 19.08 0.587 0.336

IBRNet [47] 12.71 0.4772 0.5678 16.40 0.5230  0.4986

MVSNeRF [6] Unseen 18.92  0.6831 0.2580 16.98 0.5839  0.3853

Ours 19.03  0.6929 0.2066 16.55 0.5534  0.3441
Ref. view 1 Ref. view GT Target Pred. Target Pred. Depth

A )

Figure 5: Example predictions for the DTU (top) and Forward Facing (bottom) datasets.

the simplistic PSNR and SSIM accuracy measures are relatively similar. However, drastic
improvements are seen in the LPIPS metric over previous work ranging from a 15% to 60%
improvement in the perceptual accuracy of the reconstructed scene. It is interesting to note
that our approach performs especially well on the more challenging DTU dataset. Qualitative
examples for both datasets are shown in figure 5. For additional examples please see the
supplementary material.

Table 2: Ablation study. We study the effect of each addition to the model on the
Forward facing dataset. Bold is best result, ifalic is second best.

Depth Smooth  Distortion ~ Adversarial | PSNRT SSIM1 LPIPS|

X X X 16.11 0.5318 0.4791
v X X 16.14 0.5361 0.4709
v v X 16.10 0.5419 0.4611
v v v 16.55 0.5534 0.3441

4.3 Ablation study

In table 2 we undertake an ablation study on the Forward Facing dataset. The depth smoothing
loss makes a small but noticable difference across all metrics. It is interesting to note that
the distortion loss leads to a marginal decrease in the PSNR and SSIM metrics. However, it
provides a more significant improvement in terms of LPIPS. This is expected, as the distortion
loss slightly limits the flexibility of the volumetric rendering by preventing “smearing” the
scene across depths. However, this in turn removes floating blob artifacts and blurred scene
depth when viewed from distant viewpoints. These artifacts have a significant impact in the
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overall perceptual quality of the rendered image, and are vital for possible human-centric
applications.

The final adversarial loss leads to significant improvements across all metrics, with the
largest gains once again being with the LPIPS score. This demonstrates that the integration
of adversarial learning is vital for producing plausible renders for Sparse View Synthesis.

5 Conclusions

In this paper we have proposed the Sparse View Synthesis problem. This is a view synthesis
problem where the number of reference views is limited, and the baseline between target and
reference view is significant. This is a common scenario in live event capture, virtual reality
and similar domains.

This imposes a number of challenges which are not present in the standard novel view
synthesis problem setup. Most notably the fact that large portions of the target view may
be occluded or otherwise not visible within the reference views. In this case there is no
mechanism for a standard radiance field model to appropriately fill the gap.

Therefore we proposed an algorithm which unified generative adversarial learning tech-
niques with traditional radiance field modelling. This encouraged the system to inpaint unob-
served regions with plausible scene completions. This led to perceptual quality improvements
of up to 60% compared to existing radiance field models.

Nonetheless, there is still some way to go to achieve full extreme Sparse View Synthesis.
Although GANSs produce good results at generating new content, they suffer from the classic
training instability, which makes the model harder to train. In addition, the difficulty of the
problem means the complexity of the solution increases. As we handle extreme baseline
movements, this creates an ill-posed problem where sometimes the network doesn’t differ-
entiate between empty or occluded space. Thus, in areas viewed by only one of the source
views, the reconstruction can lack fidelity. In future work it may be possible to resolve this
by re-weighting the generative losses in different regions based on visibility. Regardless, the
proposed approach is a major step towards achieving more extreme and sparse renderings.

In future work, it would be interesting to explore the integration of alternative generative
modelling techniques with radiance field models. In particular, if the radiance field is able
to recognise areas in which it is uncertain, diffusion networks could inpaint these regions
directly.

Acknowledgements. This work was partially supported by the British Broadcasting Cor-
poration (BBC) and the Engineering and Physical Sciences Research Council’s (EPSRC) in-
dustrial CASE project “Generating virtual camera views with generative networks” (voucher
number 19000033).
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