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Abstract Experiments

In this paper, we propose a novel augmentation-based DG A. Main results
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Table 1: Leave-one-domain-out generalization results on PACS and Office-Home.

Augl earn (-F) outperforms the ERM method by a clear margin on
both PACS and Office-Home datasets. In addition, Augl.earn (-F)

. ‘?mp 1s complementary to other DG method (e.g. MixStyle).
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Existing augmentation DG methods are non-optimizable or e . generalization ability.
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We have presented a novel data augmentation based DG method,
termed Auglearn. Auglearn treats the augmentation module as the
model hyperparameters and optimizes i1t with meta learning. Our
Auglearn 1s light-weight, model-agnostic and applicable to any base

A is the augmentation module, and F is the classification model.

Augmentation in frequency space
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inherently, our Augl.earn module 1s capable of augmenting data in
both the time and frequency spaces.
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T is DCT, and Tinv is inverse DCT.
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