
Supplementary Material

1 Evaluation on Digits-DG

Implementation. We exploit a compact convolutional network as our backbone on Digits-
DG dataset, following [10]. Images are resized to 32× 32, and we split the data into 80%
for training and 20% for validating. The models are trained on the training set of source
domains for fair comparison. Models are trained from scratch, and the training details are
the same as those of PACS except for the initial learning rate and batch size. We initialize
the learning rate using 0.05 and set batch size to 128.

Results. From the results in Table 1, we can see that our AugLearn and AugLearn-F again
can both improve ERM baseline, while AugLearn-F enables a larger boost 1.5% compared
with 0.4% of AugLearn. Unsurprisingly, our AugLearn and AugLearn-F variants are still
complementary with MixStyle on this benchmark, producing 0.7% and 2.1% accuracy gains
and leading to the new state of the art results on this benchmark. Overall, these results
demonstrate the good generality of our proposed methods.

Method MNIST MNIST-M SVHN SYN Average

ERM 95.8 59.8 62.8 79.4 74.5
CCSA 95.2 58.2 65.5 79.1 74.5
MMD-AAE 96.5 58.4 65.0 78.4 74.6
CrossGrad 96.7 61.1 65.3 80.2 75.8
JiGen 96.5 61.4 63.7 74.0 73.9
DDAIG 96.6 64.1 68.6 81.0 77.6
L2A-OT 96.7 63.9 68.6 83.2 78.1
MixStyle 96.5 63.5 64.7 81.2 76.5

ERM+AugLearn 96.1 62.3 63.2 78.1 74.9 (+0.4)
ERM+AugLearn-F 96.3 63.9 64.3 79.3 76.0 (+1.5)
MixStyle+AugLearn 96.7 65.1 66.8 80.2 77.2 (+0.7)
MixStyle+AugLearn-F 96.9 65.6 69.2 82.8 78.6 (+2.1)

Table 1: Leave-one-domain-out generalization results on Digits-DG.

2 Evaluations on DomainNet

Implementation. We exploit ResNet18 as the backbone and resize the image to 32× 32.
We train the model on the training set and test the trained model on the testing set following
[4]. Other training settings are the same as those of PACS dataset.

Results. From the results in Table 2, we observe that AugLearn(-F) outperforms ERM
method with a clear improvement margin, 1.28%(1.56%) accuracy on DomainNet dataset.
Notably, AugLearn(-F) outperforms ERM on the most challenging held-out quickdraw do-
main by 2.19%(3.55%).
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Method clipart infograph painting quickdraw real sketch Average

ERM 38.76 18.22 30.66 16.46 32.98 29.67 27.79

ERM+AugLearn 39.21 20.17 31.84 18.65 33.69 30.84 29.07
ERM+AugLearn-F 39.86 20.76 30.97 20.01 32.86 31.64 29.35

Table 2: Leave-one-domain-out generalization results on DomainNet.

3 Comparison between DG and DA methods
Domain Generalization assumes no access to target domain data during model training, while
Domain Adapation exploits target distributions for model training. DG and DA are rarely
compared directly. Now, we compare our method with several DA methods such as MCD [5],
M3SDA[7] and CMSS [9] on PACS dataset in Table3. Those DA models perform better than
AugLearn(-F), which is expected, as they get access to the target domain data during training.

Method Art Cartoon Photo Sketch Average

ERM 78.5 75.2 96.2 67.9 79.5
MCD 88.7 88.9 96.4 73.9 87.0
M3SDA 89.3 88.9 97.3 76.7 88.3
CMSS 88.6 90.4 96.9 82.0 89.5

ERM+AugLearn 82.9 78.8 94.5 80.1 84.1
ERM+AugLearn-F 81.9 79.2 95.3 80.7 84.3

Table 3: Comparison between DG and DA methods on PACS.

4 AugLearn vs. Strong Augmentations
In order to verify the efficacy of our proposed AugLearn(-F), we also compare our meth-
ods with several standard strong augmentation methods, such as Cutout [2], CutMix [8]
and DropBlock [3], on PACS. From the results in Figure 1, we observe that our proposed
AugLearn(-F) method outperforms all strong augmentation methods on all domains with a
large margin except the photo domain. It is worth noting that the AugLearn(-F) method
achieves much better performance than strong augmentation methods on the held-out sketch
domain. This means our AugLearn method is capable of generating augmented images to
make the model focus on abstract shapes. This suggests that optimizing the augmentation
module explicitly with domain shift is beneficial to learn the underlying abstract information
which is generalizable to unseen domains.

5 Optimizing the hyperparameters of simple
augmentations.

Table 4 shows the results of using augmentations, i.e. color jitter and cutmix, with a fixed
hyperparameter and our optimized value. We can see our AugLearn module improves their
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Figure 1: Comparison with standard strong augmentation methods on PACS.

performance from 77.83% and 75.98% to 79.19% and 77.03% on PACS respectively. This
further shows that using a hand-crafted augmentation is not optimal for DG and demonstrates
the necessity of our proposed meta-learning based augmentation module.

Method Art Cartoon Photo Sketch Average

ERM 78.5 75.2 96.2 67.9 79.5
ColorJitter scale (fixed) 74.90 74.02 95.39 66.99 77.83
ColorJitter scale (learned) 76.35 76.28 95.68 68.44 79.19
Cutmix alpha (fixed) 74.72 69.48 93.81 65.89 75.98
Cutmix alpha (learned) 76.51 68.96 95.32 67.32 77.03

ERM+AugLearn 82.9 78.8 94.5 80.1 84.1
ERM+AugLearn-F 81.9 79.2 95.3 80.7 84.3

Table 4: Results of optimizing the hyperparameters of simple augmentations.

6 Applicability to Other Base DG Methods
Our proposed AugLearn is model agnostic and applicable to any base DG methods. Beside
MixStyle, we also apply our AugLearn on top of other state of the art DG methods, such
as JiGen [1] and CrossGrad [6], on Digits-DG. From the results in Table 5, we can see that
incorporating our AugLearn improves both JiGen and CrossGrad noticeably with 1.4% and
1.7% accuracy improvement respectively, resulting in the state of the art performance on
Digits-DG. These results further verify the generality and applicability of our AugLearn.

7 Training Cost
In our AugLearn, we meta optimize the augmentation module every 30 steps of updating
the classification model. We calculate the training cost per step of our AugLearn is 0.049s,
whereas MixStyle takes 0.03s per step. Apparently, we can see that our method is compara-
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Method AugLearn MNIST MNIST-M SVHN SYN Avg.

JiGen ✗ 97.6 59.1 66.0 87.8 77.6
✓ 98.1 61.3 69.2 87.5 79.0

CrossGrad ✗ 95.7 60.3 63.5 80.1 74.9
✓ 96.3 63.4 66.1 80.6 76.6

Table 5: Applicability to other DG methods. The results of JiGen and CrossGrad are based
on our run.

ble to the state of art methods in terms of the training cost, but trains a stronger model. This
experiment is done on PACS using GPU Nvidia RTX 2080Ti.
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