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Abstract

Ensemble of predictions is known to perform better than individual predictions taken
separately. However, for tasks that require heavy computational resources, e.g. seman-
tic segmentation, creating an ensemble of learners that needs to be trained separately
is hardly tractable. In this work, we propose to leverage the performance boost of-
fered by ensemble methods to enhance the semantic segmentation, while avoiding the
traditional heavy training cost of the ensemble. Our self-ensemble approach takes ad-
vantage of the multi-scale features set produced by feature pyramid network methods to
feed independent decoders, thus creating an ensemble within a single model. Similar
to the ensemble, the final prediction is the aggregation of the prediction made by each
learner. In contrast to previous works, our model can be trained end-to-end, alleviat-
ing the traditional cumbersome multi-stage training of ensembles. Our self-ensemble
approach outperforms, by the time of the publication, the previous state-of-the-art on
the benchmark datasets Pascal Context and COCO-Stuff-10K for semantic segmentation
and is competitive on ADE20K and Cityscapes. Code is publicly available at https:
//github.com/WalBouss/SenFormer

1 Introduction
Semantic segmentation is the task of assigning each pixel of an image with a semantic cat-

egory. Its many applications include robotics, autonomous cars, medical application, aug-
mented reality and more. Most segmentation methods follow an Encoder-Decoder scheme.
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Figure 1: SenFormer architecture. (Left): The features extracted by the backbone
{C>,C3,C4,Cs} are enhanced in a feature pyramid to produce spatially and semantically
strong features maps at every level of the pyramid {P,, P;,Ps,Ps}. Each set of features is
decoded by a different learner in the ensemble and the learners’ predictions are merged.
(Right): architecture of the transformer block.

The encoder extracts the relevant features of the image to characterize each pixel, a pro-
cess usually involving down-sampling the feature maps to increase the receptive field of the
model. The decoder up-samples the feature maps to both recover the spatial information and
produce a per-pixel classification. In [30] the authors extended this procedure to fully convo-
lutional network (FCN), which paved the way for later work to achieve impressive results on
various segmentation datasets and has since dominated the field of semantic segmentation,
let it be for medical [17, 34], self-driving cars [35] or robotics applications [18]. Follow up
work mainly focused on enhancing FCN to mitigate the inherent locality of the convolution
operation. Some examples are the atrous convolution that introduces holes in convolution
kernel [3, 4], the pyramid pooling module (PPM) that aggregates context information us-
ing different kernel pooling layers, and [44] that combine the PPM and the feature pyramid
network (FPN) [27] to capture context information at different resolutions.

The starting observation of this paper was that the combined use of a backbone and an
FPN-like method [14, 20, 27, 28, 37, 41] allows extracting multiple features sets at differ-
ent scales for a single image with a unique forward pass. Furthermore, in [27] the authors
show that these features are both semantically and spatially strong at each level of the fea-
ture pyramid. Consequently, one has access to multiple features representations of the same
image that carry different contextual information at different scale and are loosely correlated
(as shown in[41]). This raises questions about the optimal way to use these multi-scales
features. A canonical use is UperNet [44], which concatenates the multi-scale feature maps
before feeding them to a decoder. However, this paper argues that the "features fusing" strat-
egy consisting of merging the different sets of features maps and letting the model decide
which one is important is sub-optimal and often computationally expensive. Indeed, in Uper-
Net, the four pyramid levels are concatenated and merged by a convolution, which by its own
involves 155G FLOPs, thus making the "features fusing" strategy FLOPs intensive. More-
over, we hypothesize that a single decoder cannot fully take advantage of the multi-scale
features that contain different views of the same objects of interest. Hence, the model may
focus on one view and overlook valuable features. This "multi-view" hypothesis is indeed
supported by a recent study: in [1] the authors argue that in vision datasets, objects can be
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recognized using multiple views and show that in the context of image classification, for a
given weight initialization, a model will learn to focus on particular views while discarding
others.

To overcome the limitations of "features fusion" strategies, we propose and study a dif-
ferent approach to exploit the FPN multi-scale features. Our approach feeds independent
decoders with features coming from different levels of the feature pyramid, and then com-
bine the segmentation maps together, hence avoiding expensive features fusion operations.
Since the inputs to the learners (i.e., decoders) come from different levels of the feature pyra-
mid that differ in scale and contain different spatial and semantic information and that the
learners are independent, our method can be interpreted as a form of self-ensemble segmen-
tation. Usually, the learners of an ensemble must be trained independently. In this work,
we show that, in the context of semantic segmentation, this condition can be relaxed and
imposed solely to the decoders. Our experiments show that — all else being equal — this strat-
egy improves UperNet performance. However, increasing the number of decoders/learners
inevitably increases parameters number. Overall, our observations on self-ensemble perfor-
mance effectiveness but parameter burden, lead us to design a transformer-based model: Sen-
Former (Self-ensemble segmentation transFormer). Our motivation for using transformer-
based learners is that besides transformers’ ability to capture long-range dependencies, it
has been observed [10, 22, 24] that recursively applying the same transformer block to the
same input features can produce similar — if not better — results than using different blocks
while reducing the number of parameters and overfitting. Ultimately, our method has fewer
parameters and FLOPs than UperNet and performs better.

Overall, our SenFormer approach achieves excellent results on various benchmark datasets.
Specifically, it outperforms similar architectures [44] that use "feature fusion" strategy, sug-
gesting that our self-ensemble approach effectively leverages the expressive power of en-
semble methods. In particular, SenFormer achieves 51.5 mloU on the benchmark dataset
COCO-Stuff-10K [2] and 64.0 mIoU on Pascal-Context [31], outperforming the previous
state-of-the-art by a large margin of 6 mloU and 3.0 mIoU respectively. SenFormer is also
on par with state-of-the-art methods on Ade20K [48] and Cityscapes [9]. To summarize,
our goal is to show that self-ensemble is a more efficient and effective way to leverage multi-
scale features for segmentation than "features merging" strategies. To illustrate our point, we
proposed SenFormer architecture. We motivate this goal by the observation that each scale
of a feature pyramid carries a different amount of contextual information that a single de-
coder cannot fully exploit. We, therefore, adopted a divide-and-rule policy (self-ensemble),
where each learner focuses on one scale. However, increasing the number of learners also
increases the parameters, hence the exploration of weight sharing strategies.

2 Method

In this section, we first present the general framework of our method based on self-ensemble
as shown in figure 1. Then we detail the different merging strategies. Finally, we describe
learners’ architecture and the different weight sharing strategies.

Following notations in [16, 27, 44], we denote C; € Rdi x g * % the output of the i-th stage
of the bottom-up network (i.e. backbone) which has stride of 2 pixels with respect to the
input image, where H x W is the spatial dimension of the input image and d; the number of
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H W
channels. Similarly, we denote P; € R the output of the i-th stage of the top-down

network (i.e. output of the FPN), where d is the numbers of channels in all the feature maps
of the FPN. We denote N the number of class.

2.1 Self-Ensemble

In this paper, we approach the problem of semantic segmentation as that of a per-pixel clas-
sification. Therefore, learners predictions and the merging strategies will be described for an
arbitrary pixel and can easily generalize to the whole segmentation map.

An ensemble traditionally consists of M independently trained models called learners.
For a given pixel, let denote X; € R the random variable parameterized by the output of the
i-th learner for that particular pixel, which can be decomposed in X; =Y + ¢ where Y is the
target and g&; is the prediction error of the i-th learner.

The most straightforward way to merge different learners’ predictions is by averaging
them. It is well known [33] [49] [23] that the ensemble performance is usually better than
the individual learners.

Classical statistics suggest that when the predictions are roughly independent, the last
term in equation 1 is close to zero and therefore averaging greatly reduces the noise.

1Y 1 M 2
Var(ﬁizzlsi) = Wi:ZlVar(Si) + W ZCOV(S,’,SJ'). (1)

i<j

On another note, a recent study suggests that this hypothesis might not hold in the context of
deep learning. In [1], Allenzhu et. al, acknowledge that for the task of image classification,
the different learners learn to detect different views/features of the object of interest depend-
ing on their weight initialization. Howeyver, there are some images taken from a particular
angle where the learned features may be missing. Hence, when the ensemble is large enough,
all possible views are captured, thus increasing the model’s accuracy. Note, however, that
it is not clear in [1] if this result also holds for semantic segmentation. Either way, a key
requirement is that the learners’ predictions must be independent, let it be for the variance
reduction or the multi-view hypothesis.

Total independence of the predictions implies tediously training multiple independent
models. In this paper, we aim at relaxing the independence hypothesis to reduce the train-
ing cost, while maintaining the performance benefits of ensemble. To do so, the learn-
ers/decoders share the same backbone but receive input features coming from different levels
of the feature pyramid, i.e., {P,, P5, Py, Ps }, as shown in figure 1.

Nevertheless, it is observed that if one trains the different learners of an ensemble alto-
gether (i.e., applying the loss on the merged prediction), the performance boost offered by
the ensemble disappears [1]. However, we show in our experiments that it is not the case in
our setting. We hypothesize that it is because each learner is independently initialized (as in
ensemble) and receives different inputs, therefore alleviating the need for separate training.
In this manner, several segmentation predictions can be obtained with only a single forward
pass of the input image.

2.2 Merging strategies

We describe the different methods considered to merge the different learner predictions (dur-
ing inference).
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Averaging. It is the most commonly used method for prediction merging as no additional
trainable parameters are required. The merged prediction X, of M learners is obtained by:
Xavg = ﬁ Y Xi

Product. The predicted probability for each pixel is multiplied rather than average. That
way, more weight is given to learners with high confidence.The merged prediction X,,,q of
M is given by: X},0q = Hﬁl X;.

Majority vote. Each learner assigns a vote to the class with the largest confidence.

Hierarchical Attention. We borrow the "attention module" from [38] that is used
to learn a relative attention mask between adjacent scales. The module consists of (3 x
3conv) — (BatchNorm) — (ReLU) — (3 x 3conv) — (BatchNorm) — (ReLU) — (1 X
1 conv) — (Sigmoid), where the last convolution output a single (attention) map. In the
original paper, the module is fed with the same input features maps of the decoder. Another
variant would be to use the segmentation logits (decoder’s output) instead. In our experi-
ment, we tried both and found the latter to work better with SenFormer. Since SenFormer
has four learners, we need 3 "attention modules" to predict the relative attention maps.

Explicit Attention. We used the same "attention module" as for Hierarchical Attention
[38], but trained it to predict a dense mask for each scale rather than a relative mask.

Surprisingly, our experiments found the simple "averaging" strategy to perform better
than others, except for the "hierarchical attention" (Table 4). However, given the perfor-
mance boost of the "attention module" is limited, it does not justify the overhead complex-
ity. Therefore, SenFormer uses the "averaging” as the default merging strategy since it yields
high performance without requiring additional parameters.

2.3 Learner architectures

Hereafter, we described the architecture of a single learner/decoder. As depicted in Figure
1, the i’ decoder branch takes as input the features coming from the corresponding level of

the FPN (with stride s;) P, € R % * % , as well as a set of N learnable embeddings termed
as class embeddings, cls; = [cls}, ..., clsN] € RV*?, where N is the number of class. In this
respect, there is one learnable class embedding clsf»‘ per segmentation class and per level in
the feature pyramid.

Each decoder is a transformer composed of L layers whose architecture is inspired by
the traditional transformer [39]. Note however that a "pre-norm" strategy is used in place of
"post-norm" for the placement of Layer Normalization (LN), i.e., the skip connections inside
each transformer block are not affected by the LN [32] (see ablation study in the Annex).

In a nutshell, a single Transformer Decoder block consists of three successive operations:
Cross-Attention, Self-Attention and Multi-Layer Perceptron layers. In the Cross-Attention
operation the feature map F; is used as key and value while the class embedding cls; is used
a query. The Self-Attention and MLP are applied only to the class embeddings.

Finally, each decoder/learner is composed of L layers of decoder block and its prediction
is obtained via a dot product between the class embeddings cls; and the corresponding feature
pyramid feature P, — see the Annex for more details. However, using multiple decoders
greatly increases the number of parameters. To mitigate this, we explore several weight-
sharing strategies.
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method backbone crop size  #params. FLOPs mloU
Z | UperNet ResNet-50 512x512 67M 238G 42.05
% SenFormer  ResNet-50 512x512 55M 179G 44.38
UperNet ResNet-101  512x512 86M 257G 43.82
SenFormer ResNet-101  512x512 79M 199G 46.93
8 | UperNet Swin-T 512x512  60M 236G 44 .41
g SenFormer  Swin-T 512x512  59M 179G 46.0
@ UperNet Swin-S 512x512  81M 259G 47.72
E SenFormer  Swin- SJ 512x512 81M 202G 49.2
UperNet Swin-B* 640x640 121M 471G 50.04
SenFormer  Swin-B* 640x640 120M 371G 52.21
UperNet Swin-L* 640x640  234M 647G 52.05
SenFormer ~ Swin-L¥ 640x640 233M 546G 53.08

Table 1: Self-ensemble SenFormer vs features fusion UperNet on ADE20K validation.
Backbones pre-trained on ImageNet-22K are marked with *.

2.4 Weight sharing

Weight sharing is a commonly used technique to reduce the number of parameters [10, 22,
24], while also regularizing the optimization by reducing the degree of freedom which mit-
igates overfitting. However, in the context of Ensemble, special care regarding the kind of
weight sharing used must be given.

Two types of weight sharing can be used: inter-learner and intra-learner sharing. The
former involves sharing parameters between the different learners, while latter within the
learner. A figure depicting the different sharing methods can be found in Annex.

Repeated block. A given learner is composed of a single decoder block recursively used
L times. It is a form of "intra-learner sharing" since no parameters are shared between the
different learners.

Decoder sharing. The different learners share the same decoder but have their own class
embedding. It is a form of "inter-learner sharing".

Class embeddings sharing. The same learnable class embeddings cls is used for all the

learners. It is also a form of "inter-learner sharing".
Table 3 shows that any "inter-learner sharing" strategy significantly degrades the segmenta-
tion performance, confirming the importance of keeping the different learners as independent
as possible. Conversely, the "repeated block" strategy performs better than when no sharing
is used, while significantly reducing the number of parameters. Hence, SenFormer uses the
"repeated block" as the default weight sharing policy.

3 Experiments

Datasets. We evaluate our model performance using four semantic segmentation benchmark
datasets, ADE20K [48], Pascal Context [31], COCO-Stuff-10K [2] and Cityscapes [9]. We
use ADE20K, which is a challenging scene parsing dataset consisting of 20,210 training
images and 2,000 validation images and covers 150 fine-grained labeled classes, for the
ablation studies. Please see the Annex for detailed descriptions of all used datasets. We
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dy d3 dy4 ds ade pascal coco city weight sharing # blocks mloU #params. FLOPs

setting
vV X X X 429 519 36.576.9
X/ X X 421 518 36.0773 decoder shared 6 42.69 68M 179G
X X X & 382 463 35373.0 repeated® 6 4438 55M 179G
v/ /X 4412 52.8 38.778.0 none 14312 55SM 111G
VSV / /444 532 400783 none 6 4468 144M 179G
Table 2: Performances by using dif- UperNet 4205 67M 238G

ferent learner combinations, where
v/ /X indicates whether the learner is
used for the prediction.

Table 3: Performance comparisons on ADE20K val of
different weight sharing settings for SenFormer.® indi-
cates SenFormer’s default setting.

merging strategy mloU method  mloU #params. FLOPs
averaging 44 4 UperNet 42.02 67M 238G
product 40.28 SenUperNet® 428 70M 135G
majority vote 39.89 FFBaseline 43.1 52M 307G
hierarchical att. 44.5 SenFormer® 44.3 55M 179G
explicit att. ~ 39.7 Table 5: Comparisons of the features fusion and
Table 4: Merging strategies. self-ensemble strategies.®indicates self-ensemble.

report for every dataset the mean Intersection over Union (mloU), a standard metric for
semantic segmentation.

Baseline model. To demonstrate that the performance improvement of our method is
genuinely a result of self-ensemble instead of feature fusion, we introduce a simple decoder
baseline module that borrows the features fusion strategy from UperNet [44], but uses our
transformer decoder. This way, the FeatureFusionBaseline and SenFormer only differ by the
multi-scale fusion strategy — a figure and more details on FFBaseline can be found in Annex.

Training details. We use mmsegmentation [8] library as codebase and follow the stan-
dard training practice for each dataset. Moreover, we apply common data augmentation
for semantic segmentation, which include left-right flipping, standard random color jitter-
ing, random resize with ratio 0.5 — 2 and random cropping. Each learner is independently
supervised with a cross-entropy loss. We apply the same loss to the ensemble prediction.
Following [6] we use AdamW as optimizer and "poly" learning rate scheduler — see Annex
for more details.

3.1 Self-ensemble vs Features Fusion

Features at different levels of the pyramid carry different scale of contextual information,
and our experiments support that self-ensemble is capable of capturing and integrating such
information.

Ensemble effect. We first analyze the output produced by each decoder and assess their
performance. Table 2 outlines the mloU scores of independent prediction of each decoder
as well as for the ensemble. Notably, the ensemble mloU score is +3.5 (for Ade20K) better
than the mean score of the learners taken separately with %Z?:z mloU(d;) = 41.15. More
surprisingly, even though ds taken separately performs significantly worse than the others —
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due to its low-resolution inputs — it positively contributes to the ensemble, consistent with
traditional ensemble methods where even weak learners can be combined to enhance the
overall prediction.

Does the performance boost really comes from self-ensemble? To rule out the perfor-
mance gain brought by the use of transformer-based decoders rather than convolution, we
compare SenFormer and the FeaturesFusionBaseline, since they only differ in the multi-scale
fusion strategy (features fusion vs. self-ensemble). In Table 5, we observe that SenFormer
is +2 mloU better than the baseline. Conversely, we applied the self-ensemble method to
UperNet [44] by using the same convolution-based decoder at each level of the feature pyra-
mid rather than merging the features. Likewise, the self-ensemble version (SenUperNet)
performs better than the vanilla UperNet, suggesting that our self-ensemble approach is the
main driver for improvement.

SenFormer vs UperNet. We compare SenFormer with UperNet architecture for a vari-
ety of CNN- and transformer-based backbones. As we can see from Table 1, when using the
same standard Swin-Transformer backbone, SenFormer consistently outperforms UperNet
regardless of the backbone size. The performance gap is even larger when using convo-
lutional backbones (+3 mloU), suggesting that our transformer-based decoder successfully
captures the long-range dependencies missed by the CNN-based backbones.

Thanks to its weight sharing strategy, SenFormer has fewer parameters than UperNet.
Furthermore, since SenFormer avoids the computationally expensive features merging oper-
ation, it also has substantially fewer FLOPs.

3.2 Comparison to state-of-the-art

In this section we further compare SenFormer to state-of-the-art methods on ADE20K and
Pascal Context additional benchmark datasets.

ADE20K. In Table 6 we compare SenFormer to a variety of FCN- and transformer-based
decoders using both CNN- and transformer-based backbones. Except for the MaskFormer
family, when using standard ResNet backbones, SenFormer outperforms all other methods.
The same can be said for per-pixel classification-based models when using transformer-based
backbones, where SenFormer even outperforms recently introduced transformer-based de-
coders like SETR [47], Segmenter [36] and SegFormer [45]. Note however that most in-
stances of MaskFormer [6] are better than SenForme. Indeed, MaskFormer introduces a new
approach for semantic segmentation that is based on mask classification (rather than tradi-
tional per-pixel classification) and that greatly improves segmentation performances. In fact,
MaskFormer [6] significantly outperforms PerPixelBaseline+ [6] while sharing the same ar-
chitecture and only differing by the problem formulation (per-pixel vs mask classification).
We plan to formulate SenFormer as mask classification in our future work, as it has signifi-
cant potential to improve segmentation.

Pascal Context. In Table 7 we compare SenFormer to current state-of-the-art methods
on Pascal Context test dataset, which is obtained by CAA [21] using EfficientNet-B7(EN-
B7) as backbone, with a mloU of 60.5. SenFormer outperforms previous FCN methods when
using standard ResNet backbones, as well as recent transformer-based methods. SenFormer
outperforms the current state-of-the-art (CAA) when using the same ResNet-101 backbone,
showing the benefit of our approach. Moreover, we reach a score of 64.0 mloU when using
Swin-L as backbone. Overall, our approach shows a significant improvement of +3.5 mIoU
over the previous state-of-the-art.
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method backbone mloU +MS
method backbone mloU +MS

DeepLabV3+ [5] R50 44.0 449
PerPixelBaseline+[6] R50 419 429 DANet [11] R50 - 505
MaskFormer [6] ~ R50  44.5 46.7 EMANet [26] RS0 - 505

SenFormer R50 444 452 CAA[21] R50 5023 -

Mask2Former [7]  R50  47.2 49.2 SenFormer R50 53.18 54.3
OCRNet[46] ~ RI01 - 453 DANet[11] ~ RI101 - 526
DeepLabV3+[5] RI101 455 46.4 EMANet [26] ~ RI101 - 53.1
MaskFormer [6] R101 455 472 DeepLabV3+ [5] R101 53.2 54.67
SenFormer R101 46.9 47.9 OCRNet [46] R101 - 548
CAA [21] RIOI - 550

SETR-L MLA [47] ViT-L - 503 SenFormer R101 54.6 56.6
Segmenter [36] V¥T-L 50.7152.25 OCRNet [46] HRNet - 562
Segmenter-Mask([36] ViT-L 51.8253.63 CAA [21] EN-B7 5840 60 5%
SegFormer [45] MiT-B5 51.0 51.8 ) ’

UperNet [29] Swin-L. 52.05 53.5 SETR-L MLA[47] ViT-L 549 55.8

SenFormer Swin-L. 53.08 54.2 Segmenter [36] VIiT-L 58.1 59.0
MaskFormer [6] ~ Swin-L 54.1 55.6 SenFormer  Swin-L 63.1 64.5
Mask2Former [7] = Swin-L  56.1 57.3 Table 7: Benchmark on Pascal Context test.

Table 6: Benchmark on ADE20K #/blue indicates previous/new SOTA.
validation set.

4 Discussion

Variance reduction. A common explanation for the better per-
formance of the ensemble over its composing elements is that by
averaging the variance over the merged prediction is reduced. To

Output var. (1073)

test this assumption, for each input image in the Ade20K vali-  ensemble  56.6
dation set, we computed for the ensemble and for each learner d> 56.0
the variance over the segmentation map prediction for each pixel d3 56.8
(i.e., the variance along the channel axis). We then averaged over dy 56.3
the entire validation set. As shown in Table 8, the ensemble vari- ds 55.2

ance is not significantly smaller than the variance of the individ- Table 8: Ensemble and
ual learners. Consequently, the variance reduction interpretation learners variance on
may not apply in the context of self-ensemble, and more broadly Ade20K val.

for deep learning models [1].

Multi-view approach. A more recent explanation for the
success of Ensemble is that the different learners capture multi-
views present in the data [1]. However, since the mutli-scale
inputs of the learners come from the same backbone, it is very

1 4 443 unlikely that they focus on different views of the objects of inter-

2 8 44.2  est. We rather hypothesize that in SenFormer the boost in perfor-
Table 9: Effect of in- mance does not emerge from the different random initialization
creasing the # of learner.  of the learners that will learn to focus on specific views of the

input image, but rather from the different scale information cap-

# learners total
m
per scale # learner
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tured by the FPN. Consequently, using more than one learner per level in the feature pyramid
will not yield better results. It is indeed confirmed by results in Table 9 where SenFormer
performances do not improve with additional learners.

5 Related works

A major limiting factor for building an ensemble of deep learning models is the computa-
tional cost during training and testing. Diverse methods were proposed to tackle this is-
sue. By repeatedly applying dropout at inference on an already trained model, Monte Carlo
Dropout [12] allows getting many predictions from a single model, ultimately improving its
accuracy. BatchEnsemble [42] significantly lower ensemble cost by defining each learner’s
weights to be the Hadamard product between a shared matrix and a rank-one matrix per
learner. Snapshot [19] train a single model to converge to several local minima by leverag-
ing cyclic learning rate scheduling. Other methods for classification include MIMO [15],
hyper-batch ensemble [43], late-phase weights [40] or FGE [13]. For segmentation, [38]
improves the widely used multi-scale inference by learning relative attention between the
scales during training and is used at test-time to greatly improve the performance. However,
these methods still require several forward passes of the same image, let it be for training
or testing. Perhaps most related to our work is TreeNet [25], which uses multiple classifier
branches that share their early layers. Nevertheless, besides being for classification, unlike to
our work, all the learners receive the same input, limiting the depth of the shared part. More-
over, in SenFormer, the parameter cost of the ensemble is further reduced through weight
sharing within a learner.

6 Conclusions

This paper introduces our self-ensemble approach for semantic segmentation, a simple method-
ology that benefits from ensemble learning while avoiding the inconvenience and cost of
training multiple times the same model. We leveraged the multi-scale feature set produced
by FPN-like methods to build an ensemble of decoders within a single model, where learners
in the ensemble are fed with features coming from different levels of the feature pyramid.
We also developed a transformer-based architecture for the learner/decoders. Our approach
outperforms current state-of-the-art on Pascal Context and COCO-Stuff-10K datasets and
is competitive on Ade20K and Cityscapes datasets for semantic segmentation. It is more
efficient in terms of FLOPs and limit the number of parameter thanks to weight sharing.

Acknowledgements

We thank Romain Fabre for insightful discussion without which this paper would not be
possible. This work was partially supported by the National Institutes of Health (NIH),
National Cancer Institute (NCI) Human Tumor Atlas Network (HTAN) Research Center
(U2C CA233280), and and a NIH/NCI Cancer Systems Biology Consortium Center (U54
CA209988).


Citation
Citation
{Gal and Ghahramani} 2016

Citation
Citation
{Wen, Tran, and Ba} 2019

Citation
Citation
{Huang, Li, Pleiss, Liu, Hopcroft, and Weinberger} 2017

Citation
Citation
{Havasi, Jenatton, Fort, Liu, Snoek, Lakshminarayanan, Dai, and Tran} 2021

Citation
Citation
{Wenzel, Snoek, Tran, and Jenatton} 2020

Citation
Citation
{Vonprotect unhbox voidb@x protect penalty @M  {}Oswald, Kobayashi, Sacramento, Meulemans, Henning, and Grewe} 2020

Citation
Citation
{Garipov, Izmailov, Podoprikhin, Vetrov, and Wilson} 2018

Citation
Citation
{Tao, Sapra, and Catanzaro} 2020

Citation
Citation
{Lee, Purushwalkam, Cogswell, Crandall, and Batra} 2015


BOUSSELHAM ET AL.: SENFORMER 11

References

(1]

(2]

(3]

[4]

[5]

[10]

[11]

[12]

[13]

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge dis-
tillation and self-distillation in deep learning, 2021.

Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-stuff: Thing and stuff classes
in context, 2018.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L.
Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs, 2017.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethink-
ing atrous convolution for semantic image segmentation, 2017.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig
Adam. Encoder-decoder with atrous separable convolution for semantic image seg-
mentation. In Proceedings of the European conference on computer vision (ECCV),
pages 801-818, 2018.

Bowen Cheng, Alexander G. Schwing, and Alexander Kirillov. Per-pixel classification
is not all you need for semantic segmentation, 2021.

Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit Gird-
har. Masked-attention mask transformer for universal image segmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1290-1299, 2022.

MMSegmentation Contributors. ~ MMSegmentation: Openmmlab semantic seg-
mentation toolbox and benchmark. https://github.com/open-mmlab/
mmsegmentation, 2020.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding, 2016.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz
Kaiser. Universal transformers, 2019.

Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang, and Hanqing Lu.
Dual attention network for scene segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 3146-3154, 2019.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Repre-
senting model uncertainty in deep learning. In international conference on machine
learning, pages 1050-1059. PMLR, 2016.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G
Wilson. Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in
neural information processing systems, 31, 2018.


https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation

12

BOUSSELHAM ET AL.: SENFORMER

[14]

[15]

(16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn: Learning scalable feature
pyramid architecture for object detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7036-7045, 2019.

Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek,
Balaji Lakshminarayanan, Andrew Mingbo Dai, and Dustin Tran. Training indepen-
dent subnetworks for robust prediction. In /CLR, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition, 2015.

Mohammad Hesam Hesamian, Wenjing Jia, Xiangjian He, and Paul J. Kennedy. Deep
learning techniques for medical image segmentation: Achievements and challenges.
Journal of Digital Imaging, 32:582 — 596, 2019.

Zhang-Wei Hong, Chen Yu-Ming, Shih-Yang Su, Tzu-Yun Shann, Yi-Hsiang Chang,
Hsuan-Kung Yang, Brian Hsi-Lin Ho, Chih-Chieh Tu, Yueh-Chuan Chang, Tsu-Ching
Hsiao, Hsin-Wei Hsiao, Sih-Pin Lai, and Chun-Yi Lee. Virtual-to-real: Learning to
control in visual semantic segmentation, 2018.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Wein-
berger. Snapshot ensembles: Train 1, get m for free. arXiv preprint arXiv:1704.00109,
2017.

Shihua Huang, Zhichao Lu, Ran Cheng, and Cheng He. Fapn: Feature-aligned pyramid
network for dense image prediction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 864—873, 2021.

Ye Huang, Di Kang, Wenjing Jia, Xiangjian He, and Liu Liu. Channelized axial atten-
tion for semantic segmentation — considering channel relation within spatial attention
for semantic segmentation, 2021.

Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals, and
Joao Carreira. Perceiver: General perception with iterative attention, 2021.

Sotiris B Kotsiantis, Ioannis D Zaharakis, and Panayiotis E Pintelas. Machine learning:
a review of classification and combining techniques. Artificial Intelligence Review, 26
(3):159-190, 2006.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,
and Radu Soricut. Albert: A lite bert for self-supervised learning of language repre-
sentations, 2020.

Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David Crandall, and Dhruv Ba-
tra. Why m heads are better than one: Training a diverse ensemble of deep networks,
2015.

Xia Li, Zhisheng Zhong, Jianlong Wu, Yibo Yang, Zhouchen Lin, and Hong Liu.
Expectation-maximization attention networks for semantic segmentation. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pages 9167-9176,
2019.



BOUSSELHAM ET AL.: SENFORMER 13

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

Tsung-Yi Lin, Piotr Dolldr, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. Feature pyramid networks for object detection, 2017.

Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggregation network for
instance segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8759—8768, 2018.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted win-
dows, 2021.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. CoRR, abs/1411.4038, 2014. URL http://arxiv.org/
abs/1411.4038.

Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee,
Sanja Fidler, Raquel Urtasun, and Alan Yuille. The role of context for object detec-
tion and semantic segmentation in the wild. In 2014 IEEE Conference on Computer
Vision and Pattern Recognition, pages 891-898, 2014. doi: 10.1109/CVPR.2014.119.

Toan Q Nguyen and Julian Salazar. Transformers without tears: Improving the normal-
ization of self-attention. arXiv preprint arXiv:1910.05895, 2019.

David Opitz and Richard Maclin. Popular ensemble methods: An empirical study.
Journal of artificial intelligence research, 11:169-198, 1999.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234-241. Springer, 2015.

Mennatullah Siam, Sara Elkerdawy, Martin Jagersand, and Senthil Yogamani. Deep
semantic segmentation for automated driving: Taxonomy, roadmap and challenges,
2017.

Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Trans-
former for semantic segmentation, 2021.

Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient
object detection. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 10781-10790, 2020.

Andrew Tao, Karan Sapra, and Bryan Catanzaro. Hierarchical multi-scale attention for
semantic segmentation, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Johannes Von Oswald, Seijin Kobayashi, Joao Sacramento, Alexander Meulemans,
Christian Henning, and Benjamin F Grewe. Neural networks with late-phase weights.
In International Conference on Learning Representations, 2020.

Xinjiang Wang, Shilong Zhang, Zhuoran Yu, Litong Feng, and Wei Zhang. Scale-
equalizing pyramid convolution for object detection. 2020.


http://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1411.4038

14

BOUSSELHAM ET AL.: SENFORMER

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach
to efficient ensemble and lifelong learning. In International Conference on Learning
Representations, 2019.

Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe Jenatton. Hyperparameter
ensembles for robustness and uncertainty quantification. Advances in Neural Informa-
tion Processing Systems, 33:6514-6527, 2020.

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual
parsing for scene understanding, 2018.

Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, and Ping
Luo. Segformer: Simple and efficient design for semantic segmentation with trans-
formers, 2021.

Yuhui Yuan, Xiaokang Chen, Xilin Chen, and Jingdong Wang. Segmentation trans-
former: Object-contextual representations for semantic segmentation, 2021.

Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang,
Yanwei Fu, Jianfeng Feng, Tao Xiang, Philip H. S. Torr, and Li Zhang. Rethink-
ing semantic segmentation from a sequence-to-sequence perspective with transformers,
2021.

Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and
Antonio Torralba. Semantic understanding of scenes through the ade20k dataset, 2018.

Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: many could
be better than all. Artificial intelligence, 137(1-2):239-263, 2002.



