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Abstract

The performance of classification neural networks is often suboptimal in the real
world due to long-tailed data distributions. Re-sampling and re-weighting based on class
frequency have been adopted in the literature to address the long-tailed problem. In this
paper, we focus on the re-weighting approach. Re-weighting factors estimated by state-
of-the-art approaches are determined by the number of samples which ignore the within
class diversity (e.g. the cat class is visually more diverse than the frog class). In this
paper, we propose a concept called class volume that measures the within class diversity
and use this class volume to dynamically adjust the per-class weight. Our method does
not introduce any hyperparameter and can be easily integrated into existing models with
little computation overhead. We conducted extensive experiments and set the new state-
of-the-art performance on widely-used long-tailed recognition benchmarks.

1 Introduction
Research on neural networks mostly focus on learning from balanced datasets where each
class has approximately the same number of samples. Real-world data however is often
long-tailed by nature where the number of samples per class varies significantly. A naively
learned model tends to be biased towards the head classes resulting in poor performance for
the tail classes.

In general, there are two strategies to alleviate the challenge of long-tailed data problems:
re-balancing data distribution; and transfer learning. Re-balancing methods work either by
re-sampling (i.e., under-sampling or over-sampling) the data to achieve equal class frequency
or re-weighting the loss function in training. Transfer learning methods attempt to transfer
knowledge from the head classes to the tail classes.

Under-sampling risks missing the important concepts while over-sampling risks overfit-
ting. Transfer learning methods require the design of task-specific network models which
are usually hard to generalize. In this paper, we focus on the re-weighting approach.

The re-weighting approach aims to adjust the loss of each sample with a different weight
to shift the decision boundary. The inverse class frequency is first adopted in [16, 37]. Later
on, Cui et al. proposed the concept of effective number of samples [8] which is defined as
the hypothetical volume covered by the samples of each class. The effective number takes
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into consideration the diminishing benefit as the number of samples increases. We view the
effective number as a coarse approximation of our class volume concept that we introduce
in this paper.

We conceptualize the class volume as a continuous volume defined by the distribution
of the training data from a class. We propose to estimate the class volume as the product of
standard deviations on each axis in the logits feature space.

We view the class volume as mainly determined by two factors:

1. The within class diversity.

2. The number of samples used to train the classifier.

The effective number approach [8], along with other class frequency based re-weighting
approaches [16, 26, 28, 37], only modeled the second factor but ignored the within class
diversity.

We conducted extensive experiments on the long-tailed CIFAR (CIFAR-LT) [8] datasets
to study the various design choices as well as to compare with existing re-weighting tech-
niques. We finalized our design choice from the experiment results on the CIFAR-LT datasets
and then integrated our method with the state-of-the-art transfer learning model VL-LTR
[35]. We then conducted extensive experiments on three commonly used large-scale datasets:
ImageNet-LT [23], Places-LT [23], and iNaturalist 2018 [14].

Our method has three advantages: 1) the classification accuracy is improved significantly
over existing re-weighting methods; 2) our method is adaptive to the within class distribution
without the need to fine-tune any hyperparameter; 3) our method can be easily integrated
into existing models with little overhead. We elevated the state-of-the-art performance by
integrating our method into one of the best-performing visual-linguistic transfer learning
models VL-LTR [35].

2 Related Works
Re-sampling One direct approach to deal with an imbalanced dataset is to re-sample the
data. Resampling can be done by either sub-sampling to remove samples from the head
classes or over-sampling to add repeated samples from the tail classes. However, sub-
sampling risks missing the important concepts while over-sampling risks overfitting. Es-
tabrooks et al. [9] studied the two resampling methods with different resampling rates and
demonstrated that the overall classification performance can be improved with a proper com-
bination of different expressions of the resampling approaches.

Novel samples can be synthesized [4, 10, 32] to mitigate the overfitting problem. The
noise introduced however also hinders the performance.

Re-weighting Another approach is cost-sensitive learning which re-weights the loss func-
tion. The inverse class frequency is used in [16, 37]. The inverse square root of class fre-
quency is used in [26, 28]. The re-weighting factors in these works are empirically chosen.
Later on, Cui et al. proposed the concept of effective number [8] of samples which was de-
fined as the hypothetical volume covered by the samples of each class. Sound theoretical
analysis was provided for the effective number definition. Jamal et al. interpreted the class
balanced loss function from the domain adaptation perspective [18]. Label-distribution-
aware margin (LDAM) [2] gives the tail classes larger margins. Distribution alignment (Dis-
Align) [40] adjusts the classification scores to align the model prediction with a weighted
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empirical distribution on the training set. LTR-Weight-Balancing [1] balances norms of per-
class network weights by parameter regularization.

Finer-grained weights can be assigned on a per-sample basis. Focal loss [22] re-weights
each sample by inverse prediction probability. Jamal et al. [18] learns the weight for each
sample from the data. Influence-balanced (IB) loss [29] down-weights the head class samples
around the decision boundary to create a smoother decision boundary.

The re-weighting factors can also be learned [18, 33] from a balanced meta validation
set. The meta validation set however also increases the burden on the tail classes as the
number of samples in the tail classes is already very limited.

There are also studies targeting non-balanced testing data distribution. Label distribution
disentangling (LADE) loss [13] disentangles the model prediction from the training data
distribution. The learned model can then be calibrated for arbitrary test data distribution.
Test-time aggregating diverse experts (TADE) [41] uses multiple network branches to handle
agnostic test data distribution.

Transfer learning Transfer learning techniques, such as head-to-tail knowledge transfer
[3, 7, 15, 37, 38] or knowledge distillation [12, 17, 21, 36], have been explored to address
the long-tail problem. Recent visual-linguistic models [24, 25, 35] achieve the state-of-
the-art by utilizing the text modality. The text descriptions of a class are used to guide the
network’s attention to those visual features that relate to the class. This is especially useful
for large-scale high-resolution datasets which are rich in visual features. These methods
however require the design of task-specific models which are usually hard to be generalized
to different tasks.

Although the latest transfer learning methods have outperformed the re-weighting meth-
ods, we argue that the re-weighting approaches are still useful in the long-tail recognition
field due to their generalization capacity which makes them simple to be integrated into exist-
ing models (including transfer learning methods). In this paper, we focus on the re-weighting
technique. Our method does not add significant implementation effort or computation over-
head. In our experiments, we demonstrated that our method outperforms other re-weighting
methods. We also set the new state-of-the-art performance by integrating our method into
the latest visual-linguistic model [35].

3 Method
Let ni be the number of training samples in the ith class. i ∈ {1,2, ...,C} where C is the total
number of classes. Let D be the dimension of the feature space.

We define the D×ni feature matrix of the ith class as:

F⃗i = [ f⃗i,1, f⃗i,2, . . . , f⃗i, j, . . . , f⃗i,ni ] (1)

where f⃗i, j ∈RD is a column vector representing the features of a training sample j in class i.
The mean of the feature vectors from the ith class can be estimated as:

µ⃗i =
1
ni

ni

∑
j=1

f⃗i, j (2)
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The standard deviation of the feature vectors for the ith class can be estimated as:

σ⃗i =

√√√√ 1
ni −1

ni

∑
j=1

( f⃗i, j − µ⃗i)2 (3)

We define a new concept called class volume as the product of the standard deviations of
a particular class (Equation 4).

vi =
D

∏
k=1

σi,k (4)

To balance the loss, let αi be the weighting factor for the ith class. αi can be considered
as a training sample’s power of influence to push the decision boundary away from the class
center. The aggregated power of influence (niαi) for each class measures the distance from
the decision boundary to the class center. It is thus desired to set (niαi) to match the radius
of the class volume, i.e.

niαi ∝ D
√

vi (5)

The weighting factor can be calculated as:

αi = β

D
√

vi

ni
(6)

where β is a normalization factor (Section 3.2).

3.1 Choices of Feature Space
We have designed three variants of feature space to calculate the class volume.

Distribution Variance (DV): It is natural to choose the logits as the feature vector since
the loss function is directly applied on the logits. In such a case, the dimension of the feature
space is the same as the number of classes, i.e. D =C.

Principal axis Variance (PV): Principal Component Analysis (PCA) can be applied to
analyze correlations between axes. A tighter version of the class volume can be estimated
as the product of the standard deviation of the feature vectors projected on the principal
component axes. The projected feature matrix is:

F⃗i
†
= W⃗i

†
F⃗i (7)

where W⃗i
†

is a D† ×D matrix whose rows are the first D† principal component axes with the
biggest variance.

Decision Boundary axis Variance (BV): Classification is neither done in the Euclidean
space nor the PCA space. The class label is chosen as the one with the highest logit. The
decision boundary between class i and class j is a C−1 dimensional hyperplane defined by
the axis e⃗i − e⃗ j where e⃗i denotes the C-dimensional one-hot vector with 1 at position i. For
each class, there are C− 1 hyperplanes that separate it from other classes. We can project
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the feature vectors onto the C−1 axes defined by those separation planes. The projection is
defined as a (C−1)×C transformation matrix W⃗i

‡
:

W⃗i
‡
=


e⃗i − e⃗1
. . .

e⃗i − e⃗ j
. . .

e⃗i − e⃗C

 (8)

where j ̸= i. The projected feature matrix is:

F⃗i
‡
= W⃗i

‡
F⃗i (9)

3.2 Weights Normalization Factor
Previous works [8, 18] normalize the weights to keep the total loss at the same scale after re-
weighting. We agree with this principle as it helps to ensure that the hyperparameters (such
as learning rate, weight decay, etc) remain optimal. The previous works [8, 18] achieve this
principle by making the mean of the normalized weights equal to 1. We noticed however
that such normalization is non-optimal when the data is highly skewed.

We instead formulate the same scale loss principle as follows:

E(αℓ) = E(ℓ) (10)

where α and ℓ are the weighting factor and loss for one training sample respectively. E()
denotes the expected value.

Assuming ℓ and α are independent random variables. Equation 10 reduces to:

E(α) = 1 (11)

Since α is a discrete random variable, the probability density P(αi) can be calculated by
counting. Therefore:

E(α) = 1 (12)

=⇒
C

∑
i=1

P(αi)αi = 1 (13)

=⇒
C

∑
i=1

ni

∑
C
j=1 n j

αi = 1 (14)

=⇒
C

∑
i=1

niαi =
C

∑
j=1

n j (15)

The normalization factor β can then be derived by substituting Equation 6 into Equa-
tion 15:

β =
∑

C
j=1 n j

∑
C
i=1

D
√

v̄i
(16)

The normalization factor β is used in Equation 6 to compute the normalized per-class weights.
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Dataset CIFAR-LT-10 CIFAR-LT-100
Imbalance 200 100 50 20 10 200 100 50 20 10
CE 39.9±2.1 26.5±0.5 20.5±0.3 16.2±0.4 12.9±0.3 63.0±0.4 57.8±0.3 53.0±0.3 46.5±0.3 40.9±0.3
EN [8] 37.7±2.1 27.3±2.6 19.1±0.3 14.8±0.4 12.4±0.3 61.7±0.5 56.9±0.4 52.1±0.4 44.4±0.4 40.5±0.3
DV (Ours) 27.3 ±1.4 20.8 ±0.3 16.5 ±0.3 13.9 ±0.4 11.8 ±0.2 56.9 ±0.4 52.9 ±0.4 47.8 ±0.4 42.7 ±0.3 38.6 ±0.3
DV best (Ours) 24.9 20.2 16.1 13.2 11.2 56.4 51.8 47.2 41.8 37.9
Focal loss [22] * 34.7 29.6 23.3 17.2 13.3 64.4 61.6 55.7 48.0 44.2
Meta-Weight-Net [33] * 32.8 26.4 20.9 15.6 12.5 63.4 58.4 54.3 47.0 41.1
DA with CE [18] * 29.3 23.6 19.5 13.5 11.2 60.7 56.7 51.5 44.4 40.4
IB [29] * 26.0 21.7 18.3 14.2 11.8 62.7 57.9 53.8 47.4 42.9
LDAM [2] * - 26.7 - - 13.0 - 60.4 - - 43.1
LDAM-DRW [2] * - 23.0 - - 11.9 - 58.0 - - 41.3
LADE [13] * - - - - - - 54.6 49.5 - 38.3

Table 1: Classification error of ResNet-32 on CIFAR-LT datasets [8]. * indicates results
reported in original paper. "CE" means the cross-entropy training.

3.3 Stability of the Estimated Variance

Statistical estimation only gets stable when there are sufficient samples. In some datasets,
our estimated variance might be noisy for the last few tail classes. In such a case, we may
choose to discard those noisy estimations and substitute them with the average estimations
from the other classes.

We observed that the rare classes with few samples are more likely to have a larger class
volume. Intuitively, this is because the training process spends less effort on rare classes.
Therefore, the resulting representation is more sparse. Nevertheless, a tail class will be
assigned a larger weight even if we approximate its class volume using an average value.
This is because the weight is inversely proportional to the number of samples in the class
(Equation 6).

4 Experiments

We perform extensive experiments on the artificially created CIFAR-LT datasets [8] and
three commonly used large-scale datasets: ImageNet-LT [23], Places-LT [23], and iNatural-
ist 2018 [14]. Following [8], the imbalance factor (IF) of a dataset is defined as the ratio of
the class size between the most frequent class and the least frequent class. i.e., IF = max(ni)

min(ni)

where ni is the number of training samples in the ith class.

4.1 Experiments on CIFAR-LT

The original CIFAR [19] dataset contains 50,000 training images and 10,000 test images.
The dataset is balanced in the sense that each class has the same number of samples. Fol-
lowing common practice [8, 18], long-tailed CIFAR datasets are created by sub-sampling
the original dataset according to the exponential distribution. Five training sets are created
with the imbalance factors ranging from 10 to 200. The test set is balanced and remains
unchanged.

We run both comparison experiments and ablation studies with the CIFAR-LT datasets.
We implemented our method on top of Jamal et al.’s code [18]. We followed the same
training hyperparameter settings. Specifically: 32 layers residual network (ResNet-32) [11]
is used as the backbone; the network is trained for 200 epochs; the learning rate is initialized
as 0.1 and decayed by 0.01 at the 160th and 180th epochs; the batch size is 100.
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Dataset CIFAR-LT-10 CIFAR-LT-100
Imbalance 200 100 50 20 10 200 100 50 20 10
CE 39.9±2.1 26.5±0.5 20.5±0.3 16.2±0.4 12.9±0.3 63.0±0.4 57.8±0.3 53.0±0.3 46.5±0.3 40.9±0.3
DV 30.4±1.7 21.3±0.4 16.8±0.3 14.4±0.5 11.9±0.3 60.5±0.4 54.1±0.5 48.7±0.4 43.2±0.4 38.9±0.4
PV 30.5±1.7 21.3±0.5 16.9±0.3 14.3±0.4 11.9±0.3 62.3±0.4 57.1±0.4 51.5±0.4 46.6±0.4 43.4±0.4
PV (D† = 10) - - - - - 60.0±0.5 54.9±0.3 48.3±0.4 42.7±0.4 38.5±0.4
BV 30.8±1.9 21.2±0.4 16.9±0.3 14.4±0.4 11.8±0.3 60.1±0.3 54.2±0.4 48.7±0.4 43.3±0.4 38.9±0.3

Table 2: Ablation study of feature space choices on CIFAR-LT datasets. The results are test
top-1 errors%. "CE" means the cross-entropy training.

Dataset CIFAR-LT-10 CIFAR-LT-100
Imbalance 200 100 50 20 10 200 100 50 20 10
CE 39.9±2.1 26.5±0.5 20.5±0.3 16.2±0.4 12.9±0.3 63.0±0.4 57.8±0.3 53.0±0.3 46.5±0.3 40.9±0.3
DV 30.4±1.7 21.3±0.4 16.8±0.3 14.4±0.5 11.9±0.3 60.5±0.4 54.1±0.5 48.7±0.4 43.2±0.4 38.9±0.4
DV +NE 27.3±1.4 20.8±0.3 16.5±0.3 13.9±0.4 11.8±0.2 56.9±0.4 52.9±0.4 47.8±0.4 42.7±0.3 38.6±0.3
DV +NE +S30 - - - - - 56.7±0.4 52.6±0.4 47.8±0.4 42.8±0.3 -

Table 3: Ablation study of contribution factors on CIFAR-LT datasets. The results are test
top-1 errors%. "CE" means the cross-entropy training.

Table 1 shows the classification errors of ResNet-32 on the CIFAR-LT datasets with dif-
ferent imbalance factors. We run each experiment 30 times and report the mean, standard de-
viation, and the best of the classification errors. Our method outperforms other re-weighting
methods by a large margin. Our advantage is even more pronounced on the more challenging
CIFAR-LT-100 dataset when the data is highly skewed (50 - 200 imbalance factor).

Ablation study: choices of feature space Table 2 shows the classification errors of ResNet-
32 on the CIFAR-LT datasets with different feature space design choices as explained in
Section 3.1. The principal axis variance (PV) variant performs poorer on the CIFAR-LT-100
dataset which has a smaller number of samples (3 to 500) per class. The relatively smaller
number of samples per class leads to an unstable estimation in the last few principle axes.
The problem can be rectified by restricting the principal axes to the first 10 principle axes
with the biggest variance. After the rectification, the PV (D† = 10) variant gains a slight
advantage over the other variants.

The re-weighting methods essentially attempt to adjust the decision boundary according
to the class boundaries. These re-weighting methods mainly differ in the way how the class
boundary is estimated. We use the class volume concept defined by the within-class variance
to estimate the class boundary. Principal axis variance gives a better estimation if features
in different dimensions are correlated. Decision boundary axes variance treats variations on
non-decision boundary axes as noise. Our experiment results indicate no significant differ-
ence among the three variants. That indicates that the features in different dimensions have
low correlations. Our original choice of the simplest distribution variance (DV) suffices.
We use the DV variant in all the subsequent experiments.

Ablation study: contribution factors Our method consists of three components: DV
estimates the class volume by distribution variance; NE normalizes the weight so that the
scale of the expected loss remains unchanged; S30 substitute the class volume with the
average of that of other classes when a class is under-represented (number of samples is less
than 30). Table 3 examines the components by applying them one after another. DV and NE
contribute significantly to the classification accuracy especially when the dataset is highly
skewed. NE’s contribution increases as the imbalance factor increases. That is because it
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iNaturalist 2018 ImageNet-LT Places-LT
Method Backbone Acc(%) Backbone Acc(%) Backbone Acc(%)
LADE [13] * R-50 70.0 X-50 53.0 R-152 38.8
LTR-Weight-Balancing [1] * R-50 70.2 X-50 53.9
SSD [21] † R-50 71.5 R-50 56.0
MiSLAS [42] * R-50 71.6 R-50 52.7 R-152 40.4
LACE [27] * R-152 72.0 R-152 52.1
ResLT [6] † R-50 72.3 X-101 55.1 R-152 39.8
CMO + RIDE [30] * R-50 72.8 R-50 56.2
TADE [41] † R-50 72.9 X-50 58.8 R-152 40.9
RIDE (4 experts) [36] † R-50 73.2 R-50 55.4
PaCo [5] † R-50 73.2 X-101 60.0 R-152 41.2
DiVE + RIDE [12] * R-50 73.4 X-50 57.1
DisAlign [40] * R-152 74.1 X-50 53.4 R-152 39.3
BatchFormer + RIDE [15] * R-50 74.1 R-50 55.7
BatchFormer + PaCo [15] * R-50 57.4 R-152 41.6
NCL + Ensemble [20] * R-50 74.9 R-50 59.5 R-152 41.8
CBD + Ensemble [17] * R-101 75.3 R-152 57.7
BALLAD [25] * RN50×16 76.5 ViT-B 49.5
VL-LTR [35] R-50 74.4 R-50 69.9 R-50 48.1
DV + VL-LTR (ours) R-50 76.4 R-50 70.3 R-50 48.7
VL-LTR [35] ViT-B 76.0 ViT-B 77.0 ViT-B 50.2
DV + VL-LTR (ours) ViT-B 78.0 ViT-B 77.4 ViT-B 50.8
RAC [24] * ViT-B 80.2 ViT-B 47.2

Table 4: Results on iNaturalist 2018, ImageNet-LT, and Places-LT. "R-*" means the ResNet
[11] backbone. "X-*" means the ResNeXt [39] backbone. "RN50×16" [31] is 16× compu-
tation cost of ResNet-50 following the style of EfficientNet [34]. "*" indicates results copied
from the original paper. "†" indicates results copied from [35].

helps to keep the total loss roughly at the same scale when the data is highly skewed. The
contribution of the S30 step is relatively small because only a small portion of the training
samples is affected by the S30 step.

4.2 Experiments on iNaturalist 2018, ImageNet-LT and Places-LT

We integrate our method into one of the best-performing visual-linguistic models VL-LTR
[35]. The VL-LTR model has two stages: 1) the pre-train stage learns the visual-linguistic
representation; 2) the language guided recognition stage uses the linguistic representations
to guide the model’s attention to visual features related to each class. We start with the pre-
trained stage parameters released by the authors and integrate our method into the language
guided recognition stage. We follow the same training hyperparameter settings as the origi-
nal paper except reducing the number of epochs to 100 for the iNaturalist 2018 dataset. For
the ImageNet-LT and Places-LT dataset, all hyperparameters are the same as the original
paper including the number of epochs which is 50.

Overall performance Table 4 shows the classification accuracy on the three datasets.
For the iNaturalist 2018 dataset, the replicated results (without integrating our method) are
slightly lower (74.4 vs 74.6; 76.0 vs 76.8) than that reported in the original paper because
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Dataset Backbone Method Overall Many Medium Few

ImageNet-LT
R50 VL-LTR 69.9 78.6 66.3 47.8

Ours 70.3 ↑ 74.4 ↓ 70.1 ↑ 55.2 ↑

ViT-B VL-LTR 77.0 84.8 73.8 57.3
Ours 77.4 ↑ 82.2 ↓ 76.6 ↑ 64.9 ↑

Places-LT
R50 VL-LTR 48.1 53.0 47.1 36.5

Ours 48.7 ↑ 45.5 ↓ 50.3 ↑ 48.1 ↑

ViT-B VL-LTR 50.2 54.2 48.4 43.4
Ours 50.8 ↑ 49.3 ↓ 52.8 ↑ 50.0 ↑

iNaturalist 2018
R50 VL-LTR 74.4 78.5 75.1 72.6

Ours 76.4 ↑ 75.2 ↓ 76.5 ↑ 76.4 ↑

ViT-B VL-LTR 76.0 81.1 77.4 73.4
Ours 78.0 ↑ 79.5 ↓ 78.3 ↑ 77.1 ↑

Table 5: Detailed Per Class Group Accuracy

Dataset Backbone Training Time
VL-LTR Ours Overhead

ImageNet-LT R50 1:36:13 1:32:10 -4.2%
ViT-B 2:17:24 2:17:56 +0.4%

Places-LT R50 0:34:30 0:32:49 -4.9%
ViT-B 1:00:42 1:01:07 +0.7%

iNaturalist 2018 R50 45:10:40 46:20:47 +2.6%
ViT-B 43:48:15 45:26:26 +3.7%

Table 6: Training Time

we used shorter training epochs. Our method however can boost the model by a large mar-
gin (76.4 vs 74.6; 78.0 vs 76.8) despite having a shorter training epochs (100 vs 360). For
the ImageNet-LT and Places-LT datasets, our method boosts state-of-the-art by 0.4 and 0.6
points respectively.

Our method sets the new state-of-the-art performance on the ImageNet-LT and Places-
LT datasets. The recent RAC [24] model outperforms the VL-LTR model on the iNaturalist
2018 dataset. We hope to experiment on the RAC model when their code gets released.

Classification bias Following common practices [5, 23, 35], we split each dataset into
three subsets by the number of training samples in each class: many-shot (≥ 100 samples),
medium-shot (20 ∼ 100 samples), and few-shot (≤ 20 samples). Table 5 shows the de-
tailed classification accuracy. In all six settings, the performance on classes with "Few"
or "Medium" samples was improved, while the performance on head classes with "Many"
samples was decreased. That shows that our method indeed reduced the bias. We wish to
highlight that the overall performance improved for all datasets as shown in Table 5.
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Computational cost The class volume is computed on the entire training set once per
epoch. The dimensionality of the logits feature space is not large (less than a few thou-
sands). The computation of variance is also lightweight (O(N)). The computational cost for
each training sample is therefore a few KFLOPs which is negligible compared to the usual
GFLOPs for network training. We extracted the training time from our experiment log and
presented it in Table 6. It shows that the computation overhead is insignificant.

5 Conclusion
In this paper, we present a novel concept called class volume as a re-weighting technique to
address the long-tailed distribution problem. We define the class volume by feature space
distribution variance which captures the bias introduced by imbalance as well as within class
diversity. We also propose to normalize the weight base on the expected value. Extensive
ablation studies were conducted on the CIFAR-LT dataset to verify the effectiveness of our
two contributions in addressing the long-tailed problem.

In addition, our method is adaptive to within class distribution without introducing any
additional hyperparameter. Therefore we avoid the tedious hyperparameter fine-tuning pro-
cess. Our method is lightweight. It can be easily integrated into existing models with little
computation overhead. We set the new state-of-the-art performance on widely-used long-
tailed recognition benchmarks by integrating our method into the latest visual-linguistic
model.
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