Class-Balanced Loss Based on Class Volume for Long-Tailed Object Recognition

ZhiJian Zheng, Teck Khim Ng, School of Computing, National University of Singapore

Introduction

- > Real-world datasets often exhibit a long-tailed class distribution.
- ➤ It is important to address this imbalance issue for robust real-world application.
- Otherwise classifiers tend to be biased towards the dominating classes and perform poorly on the tail classes.

	Transfer	Re-weighting		
	Learning	Existing	Ours	
Within-class diversity	\checkmark		\checkmark	
Generalization			√	
Adaptive to data			\checkmark	
Lightweight			√	

$\mathbb{C}lass\ \textit{Volume}$ $\mathbb{O}\ v_i = \prod_{k=1}^D \sigma_{i,k}$ $\mathbb{O}\ \alpha_i = \beta \frac{\sqrt[P]{v_i}}{n_i}$ $\mathbb{O}\ \beta = \frac{\sum_{j=1}^C n_j}{\sum_{i=1}^C \sqrt[P]{\bar{v}_i}}$ $\mathbb{O}\ \beta = \frac{\sum_{j=1}^C n_j}{\sum_{i=1}^C \sqrt[P]{\bar{v}_i}}$

Class-balanced loss re-weights the loss function by a re-weighting factor α_i for each class i.

- 1. We define class volume v_i to estimate the class boundary. $\sigma_{i,k}$ is the standard deviation of the kth logit for samples in class i.
- 2. The re-weighting factor α_i can be viewed as a training sample's power of influence to the decision boundary.

The aggregated power of influence $\alpha_i n_i$ estimates the distance from a class to the decision boundary.

The re-weighting factor is assigned such that the distance to the decision boundary is proportional to the radius of the class volume.

3. Re-weighting factors are then normalized using β to preserve the expected loss:

$$E(\alpha \ell) = E(\ell)$$

+DV: Re-weight the loss by class volume estimated from Distribution Variance.
+NE: Normalize the re-weighting factors to preserve the Expected loss.

Dataset	Backbone	Method	Overall	Many-shot	Medium-shot	Few-shot
ImageNet-LT	R50	VL-LTR	69.9	78.6	66.3	47.8
		Ours	$70.3 \uparrow$	$74.4 \downarrow$	$70.1 \uparrow$	$55.2 \uparrow$
	ViT-B	VL-LTR	77.0	84.8	73.8	57.3
		Ours	$77.4 \uparrow$	$82.2\downarrow$	$76.6 \uparrow$	$64.9 \uparrow$
Places-LT	R50	VL-LTR	48.1	53.0	47.1	36.5
		Ours	48.7 ↑	$45.5 \downarrow$	$50.3 \uparrow$	48.1 ↑
	ViT-B	VL-LTR	50.2	54.2	48.4	43.4
		Ours	$50.8 \uparrow$	$49.3 \downarrow$	$52.8 \uparrow$	50.0 ↑
iNat2018	R50	VL-LTR	74.4	78.5	75.1	72.6
		Ours	$76.4 \uparrow$	$75.2 \downarrow$	$76.5 \uparrow$	$76.4 \uparrow$
	ViT-B	VL-LTR	76.0	81.1	77.4	73.4
		Ours	78.0 ↑	$79.5 \downarrow$	$78.3 \uparrow$	77.1 ↑

- > The overall accuracy is improved.
- > The classification bias is reduced.

Conclusion

- ➤ Class volume concept captures the bias introduced by both class imbalance and within-class diversity imbalance.
- > Generalizable to all existing architectures.
- Adaptive to data without introducing any additional hyper-parameter.
- Lightweight. Does not add significant implementation effort or computation overhead.