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» Real-world datasets often exhibit a long- 00
tailed class distribution.

» It Is Important to address this imbalance
Issue for robust real-world application.
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Ablation study
CE: The baseline Cross-Entropy loss.
+DV: Re-weight the loss by class volume estimated from Distribution Variance.
+NE: Normalize the re-weighting factors to preserve the Expected loss.
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1. We define class volume v; to estimate the
class boundary. 7; i Is the standard deviation
of the kth logit for samples in classz.

2. The re-weighting factor &; can be viewed as
a training sample’s power of influence to the
decision boundary.

The aggregated power of influence o;n;
estimates the distance from a class to the
decision boundary.

The re-weighting factor Is assigned such that
the distance to the decision boundary Is
proportional to the radius of the class volume.

3. Re-weighting factors are then normalized
using 5 to preserve the expected loss:

E(al) = E(()

» The overall accuracy Is improved.

> The classification bias Is reduced.

Conclusion

» Class volume concept captures the bias
Introduced by both class imbalance and
within-class diversity imbalance.

» Generalizable to all existing architectures.

» Adaptive to data without introducing any

additional hyper-parameter.

» Lightweight. Does not add significant
iImplementation effort or computation

overhead.




