

CASAPose: Class-Adaptive and Semantic-Aware Multi-Object Pose Estimation

1. Problem Definition

- Pose estimation of known 3D shapes in monocular images.
- Usecases require efficient simultaneous estimation of multiple objects' poses. \bullet
- Training only on synthetic data, as annotation of complex scenes with multiple objects is complicated. This requires the bridging of a domain gap.

State-of-the-Art Multi-object Pose Estimation

- a) Multiple evaluations per image with limited knowledge per model.
- b) Two-stage method (extra training) with additional processing (crop and scale).
- c) High dimensional output which increases with every added object. Difficult to train (GPU memory) and performance issues.

Our Contribution

CASAPose is a simple and fast method for estimating the pose of multiple objects simultaneously using a single network.

4. Visual Results

single decoder output

Depending on the keypoint location, the confidence map learns to focus on the entire mask or a specific area.

Semantic guidance minimises artefacts if occlusions are present. This improves the accuracy of the pose estimates.

5. Experiment Design

- Physically-based rendering (*pbr*) images of BOP challenge.
- Comparison with methods not using annotated real data.
- Train single network for multiple objects.
- LINEMOD (LM), Occluded LINEMOD (LM-O), Datasets: HomebrewedDB* (**HB**)
- **ADD/S** and Projection 2D metric.

* Sequences with Linemod objects

[1] Yang, Zongxin. "DSC-PoseNet: Learning 6dof object pose estimation via dual-scale consistency." CVPR 2021. [2] Thalhammer, Stefan et al. " PyraPose: Feature pyramids for fast and accurate object pose estimation under domain shift." ICRA 2021. [3] Wang, Gu et al. "Self6d: Self-supervised monocular 6d object pose estimation." ECCV 2020. [4] Li, Zhigang et al. "Keypoint- graph-driven learning framework for object pose estimation." CVPR 2021.

Anna Hilsmann, Niklas Gard,

2. CASAPose Architecture

Decoder guidance: Segmentation locally influences keypoint prediction. **End-to-end differentiable**: 2D keypoint projections directly calculated and evaluated. **Reduced network size:** Increases by one output and few weights per object.

6. Results **Ablation Study**

Architecture	LM-O	LM	pbr (synth.)
Base	22.2	49.8	42.2
Base + C	26.3	55.7	47.5
Base + C/GCU	26.7	59.0	49.0
Base + DKR	28.9	59.2	52.5
Base + C + DKR	29.9	64.7	56.1
Base + C/GCU + DKR	32.7	68.1	57.6

Capacity	LM*	LM-O
13 objects	60.4	32.7
8 objects	59.2	35.9
2 x 4 objects	64.5	38.7

ADD/S Recall with respect to the network component (top) and object capacity (bottom).

- improve accuracy.
- by a large margin.
- bridge domain gap.

* 8 LM-O objects

Comparison with the State-of-the-Art

Method	Data	Single- stage	Result LM-O (ADD/S Recall)
DSC-PoseNet [1]	pbr + RGB	-	24.8
PyraPose [2]	pbr	\checkmark	28.1
Self6D [3]	pbr + RGBD	-	32.1
DAKDN [4]	pbr + RGB	-	33.7
SD-Pose [5]	pbr	-	34.6
Ours	pbr	✓	35.9

- **Performance on LM-O**: (see above). Further comparison with single-stage multiobject method EPOS [6] : ours is multiple times faster with the same accuracy.
- **Performance on LM**: Increase of 7.4% compared to next best single-stage multiobject method [2].
- **Performance on HB**: The 13-object model without retraining surpasses next best method DAKDN[4] by 35%.

guided decoder output

Image from pbr dataset with pose annotation.

Peter Eisert

: single oder merged or field

C: split decoder with CLADE guidance

CU: split oder with full antic guidance **DKR**: differentiable keypoint regression

• All introduced network components further

• DKR improves result also for simplest architecture

Access to silhouette (C/GCU) is beneficial to

Example result LM-0

3. Network Components

Object-adaptive Local Weights

Conditional Instance Normalisation (CIN): Learned (de)normalisation (affine transformation) depends on object class (S_i) .

"How to CIN(x, S)know which object class is present?"

Class-adaptive (de)normalisation (CLADE) [7] : Learned (de)normalisation depends on semantic class at a specific location.

Semantically Guided Decoder

- Segmentation-aware convolution: Evaluates semantic mask at filter position and considers only features from the same region.
- Segmentation-aware upsampling: Enlarges feature map without losing alignment with segmentation.

Differentiable Keypoint Regression (DKR)

- Directly optimises common intersection point in loss function. Replaces nondifferentiable RANSAC-voting [8].
- Weighted linear equation system: Sum of squared distances minimised with respect to cost function D.
- Weighting by learned confidence C: Recognise relevant part of an object to localise keypoint.

Implementation Details

- Resnet-18 backbone.
- Guidance with ground truth mask during training.
- Connected component filtering reduces influence of segmentation clutter during inference (DKR).

7. Conclusions

- object 6D pose estimator.
- **Differentiable Keypoint Regression** reduces domain gap.
- **Next step**: add single-stage instance awareness.

www.hhi.fraunhofer.de niklas.gard@hhi.fraunhofer.de

The segmentation is used to select modulation parameters from the weight matrices Γ and B.

Guided operations improve the alignment between features and mask.

 $\hat{k}_{i,i} = \operatorname{argmin} D(k; S_i, V_i, C_i, P)$ *i* : Index of keypoint $k_{i,i}$: 2D keypoint *j* : Index of object P : pixel locations

Moore-Penrose inverse.

Keypoint location is calculated from estimated vectors V and confidence C by solving weighted least squares with

• **Class-adaptiveness and semantic awareness** improve the performance of a multi

Local feature processing minimises interference between overlapping regions in a reduced output space. Use one network to estimate poses of multiple objects.

Custom layers could be integrated also in other pose estimation architectures.

