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1. Problem Definition
• Pose estimation of known 3D shapes in monocular images.
• Usecases require efficient simultaneous estimation of multiple objects’ poses.
• Training only on synthetic data, as annotation of complex scenes with multiple 

objects is complicated. This requires the bridging of a domain gap.

a) Multiple evaluations per image with limited knowledge per model.
b) Two-stage method (extra training) with additional processing (crop and scale).
c) High dimensional output which increases with every added object. 

Difficult to train (GPU memory) and performance issues.
Our Contribution
CASAPose is a simple and fast method for estimating the pose of multiple objects 
simultaneously using a single network.

3. Network Components

7. Conclusions
• Class-adaptiveness and semantic awareness improve the performance of a multi 

object 6D pose estimator.
• Local feature processing minimises interference between overlapping regions in a 

reduced output space. Use one network to estimate poses of multiple objects.
• Differentiable Keypoint Regression reduces domain gap.
• Next step: add single-stage instance awareness.
• Custom layers could be integrated also in other pose estimation architectures.

6. Results
Ablation Study

Comparison with the State-of-the-Art
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Architecture LM-O LM pbr (synth.)
Base 22.2 49.8 42.2
Base + C 26.3 55.7 47.5
Base + C/GCU 26.7 59.0 49.0
Base + DKR 28.9 59.2 52.5
Base + C + DKR 29.9 64.7 56.1
Base + C/GCU + DKR 32.7 68.1 57.6

Method Data Single-
stage

Result LM-O
(ADD/S Recall)

DSC-PoseNet [1] pbr + RGB - 24.8

PyraPose [2] pbr  28.1

Self6D [3] pbr + RGBD - 32.1

DAKDN [4] pbr + RGB - 33.7

SD-Pose [5] pbr - 34.6

Ours pbr  35.9

Capacity LM* LM-O
13 objects 60.4 32.7

8 objects 59.2 35.9

2 x 4 objects 64.5 38.7

5. Experiment Design

4. Visual Results
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a) One CNN per object?      b) Additional 2D detector?       c) Branch output in last layer?
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Semantic guidance minimises artefacts if 
occlusions are present. This  improves the 
accuracy of the pose estimates.

Depending on the keypoint location, the 
confidence map learns to focus on the 
entire mask or a specific area.

ADD/S Recall with respect to 
the network component (top) 
and object capacity (bottom).

Decoder guidance: Segmentation locally influences keypoint prediction. 
End-to-end differentiable: 2D keypoint projections directly calculated and evaluated.
Reduced network size: Increases by one output and few weights per object.

• All introduced network components further 
improve accuracy.

• DKR improves result also for simplest architecture 
by a large margin.

• Access to silhouette (C/GCU) is beneficial to 
bridge domain gap.

Image from pbr dataset 
with pose annotation.
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Guided operations improve the 
alignment between features and mask.

The segmentation is used to select 
modulation parameters from the 
weight matrices Γ and B.

Base: single 
decoder merged 
vector field

C/GCU: split 
decoder with full 
semantic guidance

C: split decoder 
with CLADE 
guidance

DKR: differentiable 
keypoint regression
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Object-adaptive Local Weights
• Conditional Instance Normalisation (CIN): 

Learned (de)normalisation (affine trans-
formation) depends on object class (𝑆𝑆𝑖𝑖).

• Class-adaptive (de)normalisation (CLADE) [7] : 
Learned (de)normalisation depends on semantic 
class at a specific location.

Semantically Guided Decoder
• Segmentation-aware convolution: Evaluates 

semantic mask at filter position and considers 
only features from the same region.

• Segmentation-aware upsampling: Enlarges 
feature map without losing alignment with 
segmentation.

Differentiable Keypoint Regression (DKR)
• Directly optimises common intersection 

point in loss function. Replaces non-
differentiable RANSAC-voting [8].

• Weighted linear equation system: Sum of 
squared distances minimised with respect to cost 
function 𝐷𝐷. 

• Weighting by learned confidence 𝑪𝑪:  Recognise 
relevant part of an object to localise keypoint.

Implementation Details
• Resnet-18 backbone.
• Guidance with ground truth mask during training.
• Connected component filtering reduces influence 

of segmentation clutter during inference (DKR).

Keypoint location is calculated from 
estimated vectors 𝑉𝑉 and confidence 𝐶𝐶
by solving weighted least squares with 
Moore-Penrose inverse.

• Physically-based rendering (pbr) images of BOP challenge.
• Comparison with methods not using annotated real data.
• Train single network for multiple objects.
• Datasets: LINEMOD (LM), Occluded LINEMOD (LM-O), 

HomebrewedDB* (HB)
• ADD/S and Projection 2D metric. * Sequences with 

Linemod objects

guided decoder 
output

• Performance on LM-O: (see above). Further comparison with single-stage multi-
object method EPOS [6] : ours is multiple times faster with the same accuracy.

• Performance on LM: Increase of 7.4% compared to next best single-stage multi-
object method [2]. 

• Performance on HB: The 13-object model without retraining surpasses next best 
method DAKDN[4] by 35%.

“How to 
know which 

object class is 
present?”
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Batch Norm
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* 8 LM-O objects
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