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We provide visual results of CASAPose in Section A. Section B contains further comparisons
with the state of the art as well as two more experiments. Finally, Section C lists additional
implementation details.

A Visual Results
Fig. 1 shows estimated poses for three example images from Occluded LINEMOD (LM-O)

[1] using CASAPose trained for 8 objects. Similarly, Fig. 2 gives an impression of example
results using a model trained for 13 objects on our pbr test scene [3]. Example results of
CASAPose for HomebrewedDB (HB) [4] are shown in Fig. 3.

Figure 1: Example results of CASAPose for LM-O, with bounding boxes for correctly
estimated poses in green, incorrect poses in red, and ground truth poses in blue (ADD/S
metric).

A.1 Effect of Guided Operations
The ablation study discovered that semantic guidance improves the estimated vector fields

and the accuracy of pose estimation. The effect is best seen in direct visual comparison.
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Figure 2: Example results of CASAPose for pbr images excluded during training, with
bounding boxes for correctly estimated poses in green, incorrect poses in red, and ground
truth poses in blue (ADD/S metric).

Figure 3: Example results of CASAPose for HB, with bounding boxes for correctly estimated
poses in green and ground truth poses in blue (ADD/S metric). The left image is captured
with the PrimeSense Carmine camera; the right image is captured with Microsoft Kinect 2.

Fig. 4 shows the enhancement exemplified for an image from the pbr dataset using colour
coded vector fields for visualisation. It shows the vector fields for the first keypoint, which
is always located in the centre of each object. Comparing the output of a model without the
guided decoder in Fig. 4(b) with the output of a model with object-aware convolutions and
object-aware upsampling in Fig. 4(c), there is a clear improvement in vector fields, especially
in regions where objects overlap. In fact, we have observed that a network without semantic
guidance is not even able to produce perfectly separated vector fields when it heavily overfits
only a few images. Using CLADE alone without semantic guidance already improves the
quality of the vector fields per object due to the object-specific parameters (see Table 4 of the
main paper), but a clear separation as in Fig. 4(c) can only be achieved in combination.

A.2 Characteristics of the Learned Confidence Maps

Fig. 5 shows the estimated vector fields and confidence maps for an image from LM-O
using the 8-object model. The estimated 2D locations are highlighted by a white circle. The
confidence values are normalised inside each semantic mask for clearer presentation. For
the first keypoint (Fig. 5(b)), which is always in the centre of the object, the confidence is
relatively constant in each mask, indicating that it is easy for the network to predict this point
with high accuracy. In Fig. 5(c) and 5(d), it can be seen that the regions where the network
predicts high confidence are often spatially close to the actual keypoint location. For example,
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(a) input image and estimated mask (b) estimated vector field (Base) (c) estimated vector field (C/GCU)

(d) detail comparison 1 (e) detail comparison 2

Figure 4: Visual comparison of the estimated vector fields for a network with (C/GCU) and
without (Base) the semantically guided operations. In the detail comparisons, Base is on the
left, while C/GCU is on the right.

for the tip of the tail of ’cat’ in Fig. 5(c), it is logical that the best prediction of the location
can be made nearby. Moreover, for example, ’ape’ in Fig. 5(d) shows that the model predicts
high reliability and thus computes the 2D position of a keypoint mainly from pixels near
the object silhouette. Especially for non-textured objects, the silhouette provides important
information about the orientation of the object. It seems appropriate that the vectors near the
contour can be estimated with higher precision.

B Additional Experiments

B.1 BOP Challenge Evaluation
In the BOP Challenge 2020 [3] multiple approaches submitted results for several pose
estimation datasets, including LM-O with synthetic training. The results presented are in most
cases significantly improved by subsequently inserted changes compared with the results
from the original publications. We also evaluated our results against the BOP benchmark.
It calculates an accuracy called Average Recall (AR), which is the average of the results
for three pose error functions, Maximum Symmetry-Aware Projection Distance (MSPD),
Maximum Symmetry-Aware Surface Distance (MSSD), and Visible Surface Discrepancy
(VSD). Further details can be found in [3].

Table 1 lists the results of our procedure with this metric. CASAPose8 is our final result for
the 8-object case from the main paper. EPOS [2, 3], the only other single-stage multi-object
method achieved an AR of 54.7, slightly higher than CASAPose. CASAPose8* trained with
minimally different hyper parameters (increasing λ4 from 0.007 to 0.01), again achieves a
slightly superior result, showing that both methods are similarly accurate. Still, our method
is multiple times faster (468ms vs. 37 ms) 1. CDPNv2 [3, 7], the best method using only

1The difference is so significant, that it can also not be explained by our faster evaluation GPU.
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(a) Image and estimated mask (b) Keypoint #1

(c) Keypoint #4 (d) Keypoint #5

Figure 5: Estimated vector fields and confidence maps for three out of nine keypoints.

rgb images and no additional refinement (EPOS would be the second best method on LM-O
with these properties), reaches an AR of 62.4, but trains a single network for every object.
They make numerous extensions to their original approach (adding more complicated domain
randomisation and a more powerful backbone) that would potentially improve our method
as well, but are out of scope of this paper. The innovations of our paper to convert a multi-
stage (one network per object and bounding box detector) approach into a single-stage (one
network for all objects without need for a bounding box detector) approach could be applied
analogously to their method.

Arch. DNN AR ARMSPD ARMSSD ARV SD

EPOS [2, 3] 1/set 54.7 75.0 50.1 38.9

CASAPose8 1/set 54.2 74.3 49.4 39.0
CASAPose8* 1/set 55.4 75.3 50.8 40.2

CASAPose2x4 2/set 57.4 77.1 52.9 42.1

Table 1: Comparison of different variants of our method using the BOP benchmark on LM-O
with EPOS [2] in BOP configuration [3, 11]. CASAPose2x4 is the ’4 Obj. 2x’ result from
Table 5 of the main paper using 2 notworks, each for 4 objects.

B.2 Ablation Study: Guided Decoder
We tested different versions of the semantically guided decoder for the 13-object configuration
trained with DKR (Table 2). The first variant C/GU uses only guided upsampling and no
guided convolution. Compared with CLADE (C) alone, this does not bring an improvement,
since the increased accuracy during upsampling is cancelled out by the following regular
convolution, which does not take the masks into account. Adding guided convolutions in
the first 3 or 4 of 5 decoder blocks (C/GCU3, C/GCU4) improves the average 2DP and the
average ADD/S. Between C/GCU3 and C/GCU4 no clear difference is visible. Comparing
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LM-O LM

2DP ADD/S 2DP ADD/S

C 51.4 28.9 93.6 64.7
C/GU 50.7 30.0 93.9 62.9
C/GCU3 52.0 32.1 93.7 65.5
C/GCU4 52.7 31.9 93.5 64.9
C/GCU5 51.5 32.7 93.8 68.1

Table 2: Comparison of different versions of
the semantically guided decoder using the 13-
object model with DKR.

2DP ADD/S

PVRANSAC∗ 49.2 26.7
PVRANSAC 50.4 30.8

LSAll 45.3 29.7
LS2ndComp. 7e-3 2e-3
LS1stComp. 51.5 32.7

Table 3: Comparison of different variants
of 2D keypoint calculation using the 13-
object model (C/GCU5) on LM-O.

the final model C/GCU5 (with guided convolutions in all decoder blocks) with C/GCU4, the
2DP decreases by 0.6% on average, while an increase of 4.1% of ADD/S outweighs this. This
makes this architecture the best among the tested ones.

B.3 Influence of Keypoint Regression

Table 3 compares different variants of the calculation of 2D keypoint positions. LS1stComp.
is the variant used in our final model. It applies DKR on the largest connected component
of each object class and clearly outperforms RANSAC voting (PVRANSAC) [8] used with the
same trained model. Interestingly, if a network learns to estimate confidence maps with DKR
during training, also the results of the RANSAC voting improve (PVRANSAC compared with
PVRANSAC∗). This suggests that least squares optimisation over all vectors in a region during
training also improves the global accuracy of the estimated vectors. Applying DKR on a
complete mask without connected component filtering (LSAll) deteriorates the performance,
indicating that potential clutter in the estimated semantic masks should be removed before
calculating the 2D positions. We tested DKR on the second largest connected component
LS2ndComp. and see that it nearly never leads to a correct pose. So, at least for the case where
only one object per class is visible, using only the largest connected components is very
suitable. A proposal for adaptation to multi-instance scenarios is given in the main paper.

C Additional Details

C.1 Differentiable Keypoint Regression

The Differentiable Keypoint Regression uses a weighted Least Squares intersection of lines
calculation, incorporating confidence scores as weights, as it is described e.g. in [9]. One
system is constructed per keypoint per object. All systems are solved in parallel using
tf.linalg.pinv to calculate the Moore-Penrose pseudo-inverse. DKR uses the softplus
function to translate from the network output to the weights of the Least Squares calculations.
It is a smooth approximation of the ReLU function that constraints the output of the network to
be non negative. Compared with sigmoid, it allows to predict weights greater than 1. During
training, we add a regularisation term to avoid drift of the Least Squares weights for DKR
towards zero or infinity. The mean value in the foreground regions of each output map is ℓ1
regularised to be close to a constant value of 0.7.

Citation
Citation
{Peng, Liu, Huang, Zhou, and Bao} 2019

Citation
Citation
{Traa} 2013



6 GARD, HILSMANN, EISERT: CASAPOSE

C.2 Hyperparameter Choices
The losses LSeg, LVec, LPV , and LKey are weighted with the factors λ1−4. Previous work
weighted LSeg and LVec equally (λ1 = λ2 = 1.0) [8], or additionally added LPV as a regularizer
with much smaller weight [10]. In tests without DKR and LKey, we determined 0.015 as a
suitable choice for λ3. This is larger than the recommendation of [10], but leads to stable
convergence in our case. A reduction of the influence of LVec (λ2 = 0.5) after including
LKey preserves the balance between segmentation (λ1) and vector field prediction (λ2−4). In
summary, the weights were λ1 = 1.0 , λ2 = 0.5, λ3 = 0.015 and λ4 = 0.007.

As reported in Section B.1, we also trained a full model using λ4 = 0.01 and observed a
slight accuracy increase for LM-O (8 objects). However the 13-object model (LM) did not
converge as good in this setting.

For models with two decoders (C and C/GCU), the calculation of LVec and LPV evaluates
only those locations where the estimated segmentation matches the true segmentation, which
in our experience slightly improves the training result.

C.3 Further Details
• The Farthest Point Sampling (FPS) algorithm is used to calculate the 3D locations of

the keypoints [8]. The keypoint set is initialised by adding the object centre. The 3D
models of HB originate from a different 3D scan and have their origin in a different
location than the models of LM. We aligned them with the Iterative Closest Point (ICP)
algorithm and calculate a fixed compensation transformation for each model. It is
applied to the 3D keypoints to make a comparison with HB’s ground truth.

• Pose estimation uses OpenCV’s cv::solvePnPRansac with EPnP [6] followed by
a call of cv::solvePnP with SOLVEPNP_ITERATIVE and the previous pose as
ExtrinsicGuess.

• During training, we use scenes 0-48 from the synthetic pbr LINEMOD images from
[3] resulting in 49000 training images. Scene 49 (1000 images) is kept for testing and
is used in the ablation study.

• The experiments were conducted using Tensorflow 2.9 and use ADAM optimiser [5].
Our custom layers use Tensorflow’s tf.function(jit_compile=True) for
acceleration.
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