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Abstract

Although deep learning models have become the gold standard in achieving outstanding
results on a large variety of computer vision and machine learning tasks, the use of ker-
nel methods has still not gone out of trend because of its potential to beat deep learning
performances at a number of occasions. Given the potential of kernel techniques, prior
works have also proposed the use of hybrid approaches combining deep learning with
kernel learning to complement their respective strengths and weaknesses. This work de-
velops this idea further by introducing an improved version of Fisher kernels derived
from the deep Boltzmann machines (DBM). Our improved deep Fisher kernel (IDFK)
utilises an approximation of the Fisher information matrix to derive improved Fisher
vectors. We show IDFK can be utilised to retain a high degree of class separability,
making it appropriate for classification and retrieval tasks. The efficacy of the proposed
approach is evaluated on three benchmark data sets: MNIST, USPS and Alphanumeric,
showing an improvement in classification performance over existing kernel approaches,
and comparable performance to deep learning methods, but with much reduced compu-
tational costs. Using explainable AI methods, we also demonstrate why our IDFK leads
to better classification performance.

1 Introduction
Over the last two decades, advances in machine learning have mostly utilised deep models
with improvements in the learning algorithms and architectures to beat the state of the art
performance in computer vision and machine learning. The supremacy of deep models was
first challenged by Jaakola et al. [23] who proposed the Fisher kernel to encode higher or-
der statistics from data that continued to work very well for large scale learning problems
[8, 52, 53, 54, 55, 56]. Recently, the generalization performance of over parameterized deep
learning models became a subject of intense study which lead to building a new connection
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between ANN training and kernel methods for learning by analyzing deep architectures of
infinite network [13, 24, 30]. Both the paradigms have their unique advantages and limi-
tations, leading to the development of hybrid approaches that combine the benefits of deep
models with kernel methods [5, 7, 20, 34, 46, 47]. Our work focuses on enhancing a partic-
ular hybrid approach that utilises Fisher kernels derived from the deep Boltzmann machines
(DBMs) [5] to improve the discrimination power of the Fisher score space in its compact
form for kernel extraction. Our approach shows that the discrimination power of such Fisher
vectors could be enhanced by using an approximation of Fisher information matrix for image
classification and retrieval tasks for limited budget applications, where incorporating ultra-
deep models such as GANs could be challenging even in their pretrained form due to their
high memory footprint. Our approach is summarised in Figure 1, and the contributions of
this paper are as follows:

1. We demonstrate novel theoretical support for deriving an improved Fisher kernel from
a compact DBM using the Fisher information matrix (FIM). To the best of our knowl-
edge, the Fisher information matrix (FIM) has not been deployed with this genre of
Fisher kernels before.

2. We empirically show that using an approximated FIM improves the discrimination
power of deep Fisher score space on three benchmark data sets: MNIST, USPS and
Alphanumeric.

3. We interpret the model trained on our improved deep Fisher features using global
SHAP values [31], and also discuss the faster convergence rates and improved com-
putational costs of our approach.

The remainder of this paper is organised as follows: Section 2 discusses the related work,
Section 3 describes our proposed approach. Section 4 details our experiments and results,
Section 5 discusses our research findings, and Section 6 concludes the paper with pointers to
our future research plan.

Figure 1: An overview of our proposed framework that bridges the gap between the two
popular paradigms of kernel learning and deep learning methods for object classification.

2 Background and Related Work
Kernel methods are an attractive solution to image classification and retrieval due to their
strong mathematical foundation and ability to solve complex tasks. Fisher kernels, origi-
nally proposed by Jaakkola and Haussler [22], have shown to be effective in a variety of
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applications related to speech, text, and images. The performance gain of the technique on
object classification task was first highlighted by Holub et al. [19] by combining the prob-
abilistic constellation model with Fisher kernels. Following them, Perronin and Dance [33]
applied the Fisher kernel framework to a visual vocabulary of bag of words features mod-
elled via Gaussian mixture model. Since then, the idea has been successfully applied for
classification on many large scale object recognition data sets such as CalTech-256, PAS-
CAL VOC 2007, PASCAL VOC 2008 and ImageNet LSVRC 2012 using Gaussian mixture
models [10, 35, 41, 43]. Although Fisher vectors (also known as Fisher scores) derived from
Fisher kernels are suitable for image categorisation, they are known to be dense and high
dimensional, leading to large image signatures and high memory costs. In image retrieval,
this challenge is overcome by using compression and binarisation techniques applied prior
to image search to speed up the retrieval process without significant loss of performance
[1, 2, 42]. Furthermore, the Fisher kernel approaches have been largely overshadowed with
emerging deep neural models with higher depth, consistently outperforming the existing
kernel methods. As such, prior work has drawn parallels between deep learning and kernel
learning leading to the development of hybrid approaches [4, 9, 12, 16, 20, 34, 46], which
utilise the best parts of both paradigms. This work also focuses on one such hybrid approach
that combines the mathematical rigor of kernel learning method with the structural richness
of deep Boltzmann machine using Fisher kernels whose discrimination power has been im-
proved through an approximation approach discussed in the next section. Recently, a hybrid
approach close to our research was proposed by Zhang et al. [57], who discussed the possibil-
ity of drawing Fisher kernel from neural networks, in specific LeNet, multi-layer perceptron
(MLP), generative adversarial network (GAN) and variational auto-encoders (VAEs) by de-
ploying singular value decomposition for low rank approximation of Fisher vectors based
on power iterations methods. Our research, in comparison, deploys a different deep learning
model, i.e. DBM, in its compact form for kernel extraction. The difference just not resides
in the use of a different deep learning architecture but also in its scale (i.e. a 2 layered com-
pact model with few hidden units), thus showing the potential of the proposed approach for
limited budget applications, where incorporating ultra-deep models such as GANs could be
challenging even in their pre-trained form due to their high memory footprint. Moreover,
Zhang et al. [57] have used a linear classifier on top of the feature embeddings, whereas we
have used SVM and k-NN as a classifier on the top of the improved Fisher score embeddings.

3 Methodology
This section explains our proposed approach of computing an empirical approximation of
Fisher information matrix, embedded into a deep Fisher kernel derived from a very compact
deep Boltzmann machine (DBM). To the best of our knowledge, the Fisher information
matrix has not been deployed with this genre of Fisher kernels before. We show that our
approach can achieve near to the state of the art performance while only using a very compact
neural deep model for drawing a gradient manifold capable of giving discriminative feature
space.

3.1 Deep Boltzmann Machines
Deep Boltzmann machines (DBMs) [40] are generative models of symmetrically connected
binary stochastic units. They consists of a set of visible units v ∈ {0,1}D for observing data,
and a sequence of layers of hidden units h1 ∈ {0,1}L1 , h2 ∈ {0,1}L2 . . . ,hn ∈ {0,1}Ln that
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detect interesting features in the observations fed to the visible layer during training. There
are connections only between the hidden units in adjacent layers, as well as between the
visible units and the hidden units in the first hidden layer. In this work, we use a DBM with
two hidden layers, i.e. L = 2. In this case, the energy of the state {v,h} is defined as:

E(v,h;θ) = vTW1h1 +h1W2h2, (1)

where h = {h1,h2} is the set of hidden units in each respective layer, and θ= {W1,W2}
are the model parameters, representing visible-to-hidden and hidden-to-hidden symmetric
connections. The probability that the model assigns to a visible vector v is given as:

p(v;θ) =
p∗(v;θ)

Z(θ)
=

1
Z(θ) ∑

h
exp(−E(v,h1,h2;θ)), (2)

where p∗ denotes the un-normalized probability and Z(θ) is the partition function. To utilise
this model with Fisher kernel, we must first compute the Fisher vectors φ x (also known as
Fisher scores) by computing the gradients of the log likelihood of this generative model with
respect to its parameters θ = {W1,W2 }:

φ v = ∇θ log p(vn|θ) =
[
S[n]

∣∣Q[n]
]
,where (3)

S[n] = ∇W1 log p(vn|W1) = ⟨vh1T⟩Pdata −⟨vh1T⟩Pmodel ,

Q[n] = ∇W2 log p(vn|W2) = ⟨h1h2T ⟩Pdata −⟨h1h2T ⟩Pmodel .

The angle brackets, ⟨.⟩ in the above equations refer to the expected value over a certain
distribution specified by the subscript it follows: Pdata refers to the probability distribution
p(h|v) which is tractable, whereas Pmodel refers to the probability distribution, p(v,h), which
cannot be calculated analytically when the model has a non-trivial number of hidden units.
In practice, contrastive divergence is used to train such a system [17].

3.2 Fisher Kernel
The Fisher kernel [22] provides a generic framework for deriving a kernel from a generative
probability model, P(x|θ). The Fisher kernel function is defined as as:

K(xi,xj) = φ
T
xi

F−1
φxj , (4)

where φ x are Fisher vectors (as derived above for DBMs), and F is the Fisher information
matrix. It represents the covariance matrix of Fisher scores:

F = Ep(v|θ)[φvφ
T
v ] =−E

[(
∂ 2L(θ |v)
∂θ∂θ T

)]
=−E

[
H
(
θ |v

)]
, (5)

where L(θ ;v) defines the log-likelihood of the probability density function and H is the Hes-
sian. The Fisher kernel uses the kernel trick to map the data points x to higher dimensional
Fisher scores φ x. We can then measure the similarity of examples xi and x j in the Fisher
score space. As such, the Fisher kernel can be utilised in discriminative classifiers such as
logistic regression, decision trees, k-nearest neighbours, and support vector machines.

Unfortunately, utilising F exactly as given in Equation 4 is computationally infeasible
due to the size of the Fisher vectors (and corresponding Fisher information matrix). There-
fore, common approximations of F include: (1) using an identity matrix [25], (2) using
diagonal empirical approximation that results in whitening of the signal (i.e. each dimension
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will have zero-mean and unit-variance) [35], or (3) using an analytical approximation [48].
Note all these heuristics have been tested for Fisher kernels derived from Gaussian mixture
models previously because of their significance for large scale object classification problem.
In the next section, we show that the use of FIM is not immaterial for deep Fisher kernels de-
rived from the DBMs and introducing it can bring benefits for the classification performance
and convergence speed of the algorithm.

3.3 Improved Deep Fisher Kernel
Generally, a simple Fisher kernel without Fisher information matrix provides a good sub-
stitute empirically with reduced computational costs [1, 6, 7, 22]. While computing F is
expensive, in this work we only use an approximation of it in our proposed kernel to sig-
nificantly reduce the computational costs of downstream tasks such as classification (as op-
posed to using complete F in the kernel). We propose singular value decomposition (SVD)
as a means of approximating the Fisher information matrix. This is only achievable after
computing F exactly, but it allows us to create a more informative approximation of F lead-
ing to semantically rich Fisher vectors φ x. The use of our approach also makes our derived
Fisher vectors invariant to re-parametrisation of the probabilistic model thus improving the
downstream classification performance (as we show in Section 4.3).

In our approach, the improved deep Fisher kernel (IDFK), takes the Fisher vectors de-
rived from a DBM (Equation 3), and first normalises them using min-max and L2 normal-
isation schemes. We used min-max normalisation to prevent features with large numerical
values from dominating other features in distance-based objective functions and then applied
L2 normalisation to introduce non-sparsity in features in-order to leverage more rotation in-
variant features. The covariance matrix (Fisher information matrix F) of these normalised
Fisher scores φx is then computed, and since it is symmetric and positive semi-definitive in
nature, we factorise it using the SVD approach:

F = USVT = u1σ1vT
1 + · · ·+urσrvT

r . (6)

Note that computing the SVD of F involves calculating the eigen values and eigen vectors of
FFT or FTF. The matrix S is a diagonal matrix with non-zero real valued entries which are
singular and are arranged in descending order to denote their order of significance, while the
matrix U is an orthogonal rotation matrix composed of eigen vectors of the covariance matrix
which represent the dominant direction of the distribution. In order to derive our empirical
approximation, we first rotate the features:

Xrot = UT ×φ x (7)

This reduces the multi-collinearity of the features, making them more suitable for down-
stream tasks such as classification. Next, diagonal elements of the S matrix which bound the
parameter variances are used to compute improved deep Fisher vectors as the reciprocal of
the rotated deep Fisher score and the square root of diagonal elements of the matrix S:

φ
improved
x = Xrot ×S

−1
2 . (8)

Our improved deep Fisher kernel (IDFK) is thus defined as:

K(xi,xj) = (φ improved
xi

)T(φ improved
xj

). (9)
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Note that an exact F is not used in Equation 9. Instead, we have used an empirical approxi-
mation of the Fisher information matrix for the diagonal terms only. In previous works that
have used Fisher kernels derived from a DBM, F has been dropped altogether [3, 5]. This is
the first work that shows the utility of introducing Fisher information matrix in deep Fisher
kernel derived from DBM to induce more discrimination for the classification task.
We would here emphasize that using the IDFK on its own is insufficient — the pre-processing
steps outlined above (normalisation of the vectors) must be followed in order to get compet-
itive results with the linear classifier in SVM (see Section 4.3). Re-scaling of Fisher vectors
also improves gradient based learning and optimisation as shown previously in the literature
and Section 5.2 below.

4 Empirical Evaluation
To establish the efficacy of our approach, we performed several experiments and compared
it to the existing approaches using Accuracy metric. In this section, we detail the data sets
(Section 4.1), models (Section 4.2), and results (Section 4.3) of our experiments.

4.1 Data Sets
We have used three benchmark character recognition data sets: MNIST [29] USPS [21],
and Alphanumeric1 to evaluate the performance of the proposed approach. MNIST contains
28×28 gray scale handwritten digits ranging from 0 to 9. The data set has 60,000 training
and 10,000 test images. USPS contains 16× 16 hand written digits from 0 to 9. Although
it is smaller than MNIST (7291 training examples and 2007 test examples), it is considered
quite challenging (a human error rate of 2.5%), and the test set is more difficult than the
training set. Alphanumeric consists of 20× 16 binary images characters 0-9 and A-Z, with
a total of 1404 samples (39 images per character). As no definitive train/test split is given
for this data set, we used stratified k-fold cross validation (k=40) to generate our splits. In
all cases, the images in these data sets are binarised and flattened before being passed to the
visible layer of the DBM. This ensures a one-dimensional binary input as required.

4.2 Models and Classifiers
We examine the performance of three hybrid models utilising SVMs: Linear SVM with
Improved DFK from DBM (our method), Linear SVM with DFK from DBM [5], and Linear
SVM with FK from RBM [6]. We also train three further models using the same kernel
approaches but replace the SVM with a k-nearest neighbour (k-NN) classifier, where k=1.
When using these hybrid models, we first train the respective DBM or RBM model, and then
use same model to generate the Fisher vectors. The architectures for the DBM and RBM
models are given in Table 1. We also compare our approach to several further approaches:
Deep Belief Networks (DBNs) [18], ClassRBM [28], and a suite of deep learning methods
[11, 15, 26, 27, 36, 49, 58].

4.3 Results
Table 2 gives the comparison of our technique against other hybrid methods. Across all three
data sets, and for both the SVM and k-NN approaches, Fisher vectors derived from IDFK
give better classification results than using DFK and FK. As the generative models used are
consistent between the models, the improvement in performance is due solely to the use of

1https://cs.nyu.edu/~roweis/data.html

Citation
Citation
{Ahmed and Azim} 2020

Citation
Citation
{Azim} 2017

Citation
Citation
{LeCun, Bottou, Bengio, and Haffner} 1998

Citation
Citation
{Hull} 1994

Citation
Citation
{Azim} 2017

Citation
Citation
{Azim} 2014

Citation
Citation
{Hinton, Osindero, and Teh} 2006

Citation
Citation
{Larochelle and Bengio} 2008

Citation
Citation
{Ding, Guo, and Hou} 2017

Citation
Citation
{Hafiz and Bhat} 2020

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Kusetogullari, Yavariabdi, Cheddad, Grahn, and Johan} 2020

Citation
Citation
{Qiao, Wang, Li, and Chen} 2018

Citation
Citation
{Tang} 2013

Citation
Citation
{Zhu, Gao, Yang, and Ye} 2022

https://cs.nyu.edu/~roweis/data.html


STUDENT, PROF, COLLABORATOR: REVISITING DEEP FISHER VECTORS 7

Table 1: Architectures for the DBM and RBM models used in the hybrid approaches. Note
that IDFK with DBM and DFK with DBM use the same model (both in terms of architecture
and learned weights,i.e:|φv|=|(v× h1)+(h1 × h2)|, however embedding FIM improves the
discrimination power of deep Fisher scores.

Method MNIST USPS Alphanumeric

IDFK with DBM (Ours) [(20, 40), 16480] [(40, 80), 13440] [(40, 80), 16000]

[Hidden Units per Layer, |φ improved
v |]

DFK with DBM [5] [(20, 40), 16480] [(40, 80), 13440] [(40, 80), 16000]
[Hidden Units per Layer, |φv|]
RBM with FK [6] [10, 7840] [10, 2560] [10, 3200]
[Hidden Units, |φv||=|(v×h)|]

IDFK. We investigate why IDFK leads to better performance in Section 5.1, and provide
area under the receiver operator characteristic curve results in the Supplementary Material.

Table 2: Performance comparison of our improved deep Fisher kernel with DBM using linear
SVM and k-NN classifiers. The average accuracy is reported with standard deviation over
multiple repetitions.

Method MNIST(%) USPS(%) Alphanumeric(%)

Linear SVM IDFK with DBM (Ours) 99.20±0.10 99.10±0.02 79.00±0.05
Linear SVM DFK with DBM [5] 98.20±0.10 94.86±0.02 70.56±0.01
Linear SVM FK with RBM [6] 91.20±0.10 86.92±0.28 70.50±2.73

k-NN IDFK with DBM (Ours) 96.47±0.01 97.71±0.01 77.6±0.07
k-NN DFK with DBM [5] 85.61±0.01 91.78±0.01 71.52±0.09
k-NN FK with RBM [6] 90.95±0.03 78.02±1.67 59.11±3.84

Furthermore, using the accuracy metric, we have compared the performance of our pro-
posed approach with existing deep learning approaches . Table 3 shows that our approach
outperforms or is at least comparable to these methods. However, as we discuss in Sec-
tion 5.3, our method has a smaller computational cost than these existing deep learning
approaches.

Table 3: Performance comparison of our proposed approach (i.e. improved deep Fisher
kernel with DBM) with other popular deep learning frameworks using the accuracy metric.

Method MNIST(%) USPS(%) Alphanumeric(%)

Linear SVM IDFK DBM (Ours) 99.20±0.10 99.10±0.02 79.00±0.05
Deep Belief Network [18] 98.75 93.10±0.42 87.57±1.60
ClassRBM [28] 94.51±0.03 91.51±0.72 71.52±0.81
AlexNet [26] 96.60 97.30 94.00
CNN [27] 99.18 98.20 73.00
CKELM [11] 96.80 96.20 —
CNN-SVM Hybrid [49] 98.00 99.20 —
Resnet50 + nLDA [58] 99.10 99.20 —
Q-learning Deep Belief Network [36] 99.50 98.60 —
CNN with Two-State Q-Learning [15] 99.00 99.70 —

5 Discussion
In this section, we further discuss our findings, and investigate why our proposed IDFK
outperforms existing hybrid approaches. We begin by examining the feature explainability
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of the derived Fisher vectors (Section 5.1), then look into how IDFK affects convergence of
downstream SVM training (Section 5.2), and finally discuss the computational cost of our
approach (Section 5.3).

5.1 Feature Explainability of Fisher Vectors

In Section 4.3, we demonstrated that the IDFK proposed in this work significantly improves
performance in comparison to DFK and FK. As the other parts of the methods (generative
model and classifier) are kept consistent, the improvement in performance is due solely to the
use of IDFK. In order to understand how the IDFK leads to better performance, we utilised
t-distributed stochastic neighbor embedding (t-SNE) to project the high-dimensional Fisher
vectors into 2D space. This allows us to compare the discriminant features of the Fisher
vectors produced by IDFK with those from DFK. Figure 2 shows that IDFK leads to Fisher
vectors with clearer class separation. This improved separability leads to easier downstream
classification, e.g. using SVMs or k-NN classifier as in this work.

Figure 2: Comparison of the derived Fisher Vectors from IDFK (left) and DFK (right) for
the MNIST dataset. We provide similar plots for the USPS and Alphanumeric datasets in the
Supplementary Material.

While Figure 2 shows the separability of the MNIST classes using IDFK, it does not
provide an analysis of the classifier that is applied to the derived Fisher vectors. To further
investigate why IDFK leads to better performance, we extend our analysis to include the
classifier as well. To explore how the derived features are used in classification, we can
utilise SHapley Additive exPlanations (SHAP; [31]) to produce a global explanation of how
the derived Fisher features relate to the class predictions. In Figure 3, we give an overview of
the global feature importance for IDFK kNN on MNIST derived using SHAP. For each class,
we identify the most supporting (largest positive SHAP value) and most refuting (largest
negative SHAP value) features. We observe that there are Fisher vector features that provide
strong support and strong rejection for each class. This further reinforces that improved
separability is achieved, as each class is strongly supported as well as refuted.

5.2 Impact of Fisher Information Matrix on SGD Convergence

In this section, we analyse the performance of stochastic gradient descent (SGD) learning al-
gorithm for estimating the parameters of linear SVM on improved deep Fisher vectors com-
puted from the closed form approximation of Fisher information matrix. Numerous works
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Figure 3: Top supporting and refuting features for each MNIST class for the IDFK with
k-NN classifier. These were derived using global SHAP explanations [31]. We provide a
similar plot for the USPS datasets in the Supplementary Material.

have advocated the optimisation of SGD and training deep learning models with stochas-
tic gradient descent (SGD) approach, that not only estimates the parameters of the model
to scale well on large data sets but also has a good convergence and generalization error at
a minimal computational cost with respect to training time [37, 38, 45, 51]. However, in
both theory and practice, they suffer from numerical instability and statistical inefficiency
as estimators of the true parameter value. In order to tackle these issues, most works have
focused on replacing the Hessian matrix with Fisher information matrix that is guaranteed
to be positive definite and makes the SGD procedure more stable by affecting its learning
speed [32, 39, 50]. It is observed that efficient computation of Fisher information matrix
(FIM) helps to achieve the optimal Cramér-Rao bound under strong convexity and is consid-
ered an optimal unbiased estimator of the true parameter value for estimating the objective
function shape.

Building a connection between generalisation error and stability of SGD procedure, we
have also demonstrated the impact of embedding Fisher information matrix on SGD learn-
ing via performance curves on train data with respect to the number of epochs deployed by
SGD learning algorithm. The convergence plots on the two data sets, MNIST and USPS are
shown in Figure 4. These figures show that the proposed Fisher information matrix (embed-
ded in IDFK) not only leads to higher accuracy, but also faster convergence. This implies
the improved separability achieved by using IDFK allows the decision boundaries between
classes to be learnt more easily, and also boosts generalisation (i.e., test set classification
performance).

5.3 Computational Cost of Improved Deep Fisher Kernel (IDFK)
The time complexity of training DBM depends on the exact maximum likelihood learning
of both the data dependent expectations ⟨.⟩Pdata and the model’s expectations ⟨.⟩Pmodel , and
is exponential in the number of hidden and visible units [40]. Since we have derived Fisher
kernel from small DBM architectures, the training time is minimal, especially in comparison
to larger deep learning models. The time complexity of computing the IDFK is dependent on
two factors: finding the diagonal covariance matrix using SVD (m×n matrix takes O(mn2)
[14]) and formation of kernel trick (O(n) [44]). As discussed in Section 5.2, our approach
also leads to faster convergence for SVM’s SGD training, which further reduces the compu-
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Figure 4: Convergence of SGD for training the SVM classifier on MNIST (left) and USPS
(right) data sets . The train accuracy of the models with FIM (i.e. IDFK with DBM) and
without FIM (i.e. DFK with DBM) is shown on the y-axis.

tational cost as fewer epochs are required to reach a high level of classification performance.

6 Conclusion
This work enhances the use of Fisher kernels drawn from the deep Boltzmann machine for vi-
sual object classification task. We show how our improved deep Fisher kernel (IDFK) could
be derived by approximating the Fisher information matrix. The IDFK leads to improved
performance when compared to the existing hybrid approaches [5, 6] on three benchmark
data sets. Despite using a very compact deep model, the approach demonstrates a compa-
rable performance to various deep learning approaches, but with a smaller computational
footprint. Furthermore, through the use of explainable AI techniques, we show that the use
of IDFK leads to better separability of the derived Fisher vectors, and also faster convergence
during downstream training of SVM classifiers. In future, the approach could be further im-
proved by embedding sparsity into the Fisher information matrix. This improvement would
reduce the memory footprint of the proposed Fisher vectors enabling it to scale to larger
object classification and retrieval tasks.
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