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Overview Our Contributions

e We demonstrate novel theoretical support for deriving an improved Fisher kernel from a compact
DBM using the Fisher information matrix (FIM).

Our work focuses on enhancing a particular hy-
brid approach that utilises Fisher kernels |1| de-
rived from the Deep Boltzmann Machines |2]
(DBMs) to improve the discrimination power of
the Fisher score space in its compact form for
kernel extraction. Our improved Fisher Kernel
leads to better predictive performance.

e We empirically show that using an approximated FIM improves the discrimination power of deep
Fisher score space on three benchmark data sets: MNIST, USPS and Alphanumeric.

e We interpret the model trained on our improved deep Fisher features using global SHAP values
3], and also discuss the faster convergence rates and reduced computational costs of our approach.

Methodology
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Figure 2: Convergence of SGD for training the SVM classifier on MNIST (left) and USPS (right). Conclusio

This work enhances the use of Fisher kernels

Features Visualizatio drawn from the deep Boltzmann machine for

visual object classification task. The approach

100 9 ] 3 could be further improved by embedding spar-
. IE G E | . sity into the Fisher information matrix. This
; a0 - , improvement would reduce the memory foot-
50 - : s print of the proposed Fisher vectors enabling it
it - to scale to larger object classification tasks.
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