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Abstract

Recent works have shown that training a neural network with different stylized
images increases the shape bias while improving robustness to common corruptions
and adversarial attacks. In this work, we propose a novel training loss for increasing a
neural network’s ability to encode shape information. This is done by maximizing the
mutual information between a network’s representations of two stylized images which
share the same shape. Compared to similar approaches, we show that our method induces
a stronger inductive bias in the network towards encoding shape-based representations.
Additionally, we show that our model is more robust to adversarial attacks and distorted
images, and generalizes better to out-of-distribution examples. We obtain all these benefits
without sacrificing overall performance on ILSVRC2012 ImageNet and transfer learning
on downstream tasks (e.g., object recognition, semantic segmentation, texture recognition).

1 Introduction
Despite the impressive performance of deep neural networks (DNNs) on a variety of computer
vision tasks, they are susceptible to making predictions based on spurious correlations, such
as the texture within an image rather than an object’s shape. Indeed, recent studies have
shown convolutional neural networks (CNNs) have a ‘texture bias’ [14]. Given an image
with conflicting cues, such as a stylized image where the object’s boundary and texture have
different classes, a CNN will tend towards predicting the texture label, while humans are
far more likely to make predictions based on an object’s shape [14] (see Fig. 1). A natural
question to ask is then ‘Why do CNNs focus on texture rather than object shape?’ where shape
is defined as the 2D silhouette of an object. One answer to this question is that ImageNet [6]
(the main dataset used in these studies) is largely solvable from texture-based representations.
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Figure 1: Previous works to induce shape-bias,
such as ShapeNet [14] (i.e., a ResNet-50 [17]
trained on stylized ImageNet [14] (SIN)) have
been shown to make predictions based on local
shape cues [21]. We propose a novel objective
function which provides a global shape training
signal by maximizing the mutual shape informa-
tion (MMSI) between latent representations. We
show a ResNet50 network trained with our objec-
tive outperforms ShapeNet on normal, stylized,
cue-conflict, and corrupted image datasets.

Thus, there is a value alignment problem.
The network being trained is exclusively
focused on minimizing the loss function,
which is most easily done by using object
textures. Without additional constraints
to shape the loss function, the network
will not learn to discriminate using object
shapes which requires learning more long-
range connections with a larger receptive
field. This explanation is supported by
research showing that CNNs with a re-
stricted receptive field size achieve perfor-
mance comparable to networks having no
such restrictions [4].

Similarly, recent works have shown
that models which strongly rely on tex-
ture information to make categorical de-
cisions perform poorly on out-of-domain
examples and are more vulnerable against
different types of corruptions and adversarial attacks compared to the models which rely on
shape information [14, 30]. Extrapolating this finding to applications where avoiding failure is
critical (e.g., self-driving vehicles or medical image segmentation) suggests that current deep
learning systems are too brittle, and we must encourage the network to make decisions based
on more robust image features. Alternatively, networks which classify based on object shape
have improved generalization ability and robustness in certain domains [18, 28]. Therefore a
fruitful area of exploration is designing models which are biased towards, and encode more,
shape information in their latent representations.

In this paper, we propose a novel objective function based on an approximation of mutual
shape information between the latent representations of image pairs. Our motivation for
using this particular objective is to correct the value alignment problem and encourage
solutions which constrain the network to learn shape-based representations. Our objective
provides a global signal of shape information contained in the image (i.e., in the entire latent
representation). In contrast, existing works [14, 28] which train on image-level labels has
been shown to make predictions based on local shape cues [21]. To show the efficacy of
our approach, we first describe how to apply it in an end-to-end training pipeline for object
recognition. Next, we evaluate the robustness to distortions and adversarial attacks, out-of-
distribution examples, performance on ImageNet, and finally transfer learning on a variety of
downstream tasks. In summary, our contributions are as follows:

• We propose a new objective function which maximizes the amount of shape information
encoded in a CNN’s representations. We show quantitatively that optimizing this
objective increases both the shape-bias and the number of shape encoding neurons
more than previous methods.

• We demonstrate that our models have substantially more robustness against distortions,
adversarial attacks, and have better performance on out-of-distribution examples.

• We show empirically that our training procedure obtains these benefits without sacrific-
ing performance on ImageNet as well as transfer learning to downstream tasks.
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2 Related Work

Shape-Texture Bias. Visualization techniques [3, 31, 35] have been used to demonstrate that
the early layers in CNNs are maximally activated for high-frequency patterns, such as textures,
while deeper layers in the network activate for more abstract patterns such as object shape.
Despite shape information causing high activations in the network, recent work [14] showed
that existing CNN architectures trained on ImageNet [6] (such as ResNet [17] or AlexNet [25])
are biased towards making predictions based on image texture and can achieve human-level
performance from solely image textures. Follow-up work [19] explored this phenomenon in
much more detail with various architectures and training paradigms. Finally, [21] proposed
two new shape-based metrics which they showed can accurately estimate the number of shape
encoding neurons as well as quantify the amount of global shape information encoded on a
per-pixel level.

Learning Shape-Based Representations. After pointing out the significant bias towards
texture on cue-conflict images (i.e., images with both a shape and texture label), [14] proposed
to train networks on stylized images to bias a CNN towards learning shape. [21] showed
that networks trained with this approach fail to capture the global object shape and makes
decisions based on partial shape. Another line of work aims to ignore the texture contained
in an image. [34] proposed a module based on the gray-level co-occurrence matrix [16, 27] to
capture textural information which is removed from the learned representations using reverse
gradients [13]. [28] proposed to debias the model towards both shape and texture, by training
a CNN to predict both the shape and texture label of a stylized image. Low-pass filters have
also been used to debias models away from texture [32]. Given claims from existing work that
shape-biased models are more robust to common distortions [14], [30] performs a systematic
study of how texture-shape bias phenomenon impacts a model’s robustness to corruptions and
distortions. They found that robustness arises due to training on stylized images, and is not
always correlated to the shape bias of the model.

3 Maximizing Mutual Shape Information

In this section, we first introduce our Maximize Mutual Shape Information (MMSI) objective
function. Next, we show its differentiability with respect to the network weights. Finally, we
describe the image sampling procedure required for our method and training details.

3.1 Estimating the Mutual Shape Information

Our overall approach is shown in Fig. 2. We take inspiration from recent work [8, 21, 22],
where they approximate the number of neurons which encode shape and texture by estimating
the mutual information between the latent representations of a pair of images which share
a semantic concept (i.e., shape or texture). Using the mutual information estimate as an
objective provides a way to maximize the number of neurons which encode shape, and thus
the global shape-based signal we are interested in. The key assumption when using this
approximation is that the probability distribution of the latent representations across the
dataset is jointly Gaussian. Note that this assumption does not need to be exact for benefits
to arise from our training process, as shown by our consistent improvement in performance
(Sec. 4.2). With this assumption, given a pair of images, {Ia, Ib} with latent representations,
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Figure 2: Illustration of our proposed approach for learning a shape-based representation
by maximizing the mutual shape information (MMSI) between the latent representations of
image pairs. Given an input image, xi ∈D, we create two stylized images, {s,s′}, by applying
a style transfer algorithm (i.e., two different styles on the same image) such that the images
share the same shape. Next, we feed the original and the stylized images to the same CNNs,
fθ , to generate latent representations, zi, za

i ,z
b
i , respectively. We then compute the mutual

shape information between two stylized representations, za
i ,z

b
i , which is optimized as a loss

function, LMMSI. The three representations are then passed through a shared classifier, gθ , to
obtain the classification outputs which are used to compute the cross entropy losses.
{za

i ,z
b
i }, which share the same semantic factor (i.e., shape), the correlation coefficient, ρi,

provides a tight lower bound on the true mutual information [12, 23] as follows:

MI(za
i ,z

b
i )≥− 1

2 log(1−ρ2
i ), where ρi =

Cov
(

za
i ,z

b
i

)√
Var(za

i ) Var(zb
i )
. (1)

Given the above approximation, we simply multiply the mutual information by −1 such
that we minimize it during training, resulting in our MMSI objective:

lMMSI(za
i ,z

b
i ) =

1
2 log(1−ρ2

i ). (2)

Note that it is necessary that the lower bound on the mutual information is differentiable
with respect to the network weights, Θ. We compute the derivative as follows, by dropping
the sample index i for readability:

∇Θ

[
MI(za,zb)

]
≈ 1

2
∇Θ

[
log(1−ρ

2)

]
=

1
2

1
(1−ρ2)

·−2ρ∇Θρ

=
ρ

(ρ2 −1)
·∇Θρ.

(3)

In Eq. 3, ρ is differentiable with respect to θ as ρ is simply the correlation coefficient
between the two latent representations, za and zb, which are the outputs of a CNN and therefore
differentiable (i.e., since the covariance and variance operations are trivially differentiable).

Another perspective of the MMSI loss, is that it captures the invariance between the
two representations za

i and zb
i . Therefore, it is crucial that the image pair Ia and Ib share the

same shape; however, the MMSI loss will also measure invariances other than shape in the
representation space. For instance, if we choose images which share the same shape and
color, the MMSI loss will capture both shape and color. Despite this, we argue and show
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empirically that as long as the same shape is sufficiently contained between image pairs,
MMSI loss will capture an adequate amount of shape to admit beneficial properties to the
network, such as increased robustness. We next describe the image sampling procedure which
ensures that the image pairs share the same shape while minimizing other invariances.

3.2 Sampling Images with Similar Shape
We now discuss the procedure of sampling image pairs which share the semantic factor: shape.
This will ensure that object shape is always contained in the mutual information between
the latent representations. We use a modified version of the Stylized ImageNet (SIN) [14]
dataset, which uses a style transfer algorithm [20] to impose a random style, taken from a
dataset of artistic paintings, onto an ImageNet image. This stylization process obfuscates the
texture information of the image while leaving the shape of the object largely visible. The
modification is simply that we use two styles per image in training, contrasting the original
SIN dataset [14] where each image only has a single stylized counterpart.

3.3 Training the Network
We first sample a mini-batch from the dataset of normal images, D, and stylize each image, xi,
in the batch with different styles, s and s′. We feed each stylized image through the encoder,
fθ , to obtain the representations from the last convolutional layer of the network before the
classifier. Next, we use a global average pooling layer to produce latent representations, za

i
and zb

i , of dimensions equal to the number of channels (e.g., 2048 for ResNet50), which are
then used to calculate the MMSI objective. We also feed the stylized images, along with the
normal image, through the classifier, gθ , to obtain class logits, ys

i ,y
s′
i , and y′i, respectively. We

calculate the cross entropy (CE) loss between each of the class logits, and the ground-truth
class label yi. Our final loss, L, is the sum of the MMSI loss, lMMSI, and the three CE losses,
each with a corresponding weighting term, λ j. Our final loss is given as follows:

L = lc +λm · lMMSI +λs · ls
c +λs · ls′

c . (4)

4 Experiments
Implementation Details. We empirically set the value of the loss weights, λm and λs, to 0.8
and 0.1, respectively (see Table 7 for ablation). For a fair comparison with other shape-based
methods trained on ImageNet variants, we choose a similar set of hyper-parameters which
are described in the supplementary materials. Following [14], we analyze the following joint
training schemes. ResNet-IN: ResNet trained on ImageNet. ShapeNet-SIN: ResNet [17]
trained on stylized ImageNet. ShapeNet-SIN+IN: ResNet variant jointly trained on ImageNet
and stylized ImageNet. ShapeNet: The ShapeNet-SIN+IN model is further fine-tuned on
ImageNet (denoted as ShapeNet in [14]). MMSI-SIN: The same structure as ShapeNet-SIN
except our proposed MMSI loss is added. MMSI-SIN+IN: The same structure as ShapeNet-
SIN+IN except using the MMSI loss. MMSI: The MMSI-SIN+IN model is further fine-tuned
on ImageNet (i.e., similar to ShapeNet [14]).

4.1 Evaluation of Shape Bias and Dimensionality
Shape Bias. We compute the shape bias of CNNs trained on ImageNet which differ sig-
nificantly in their ability to encode shape information. Following [14], we generate 1,280
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Methods
ResNet-50 ResNet-34 ResNet-18

Bias (%) Factor |zk| (%) Bias (%) Factor |zk| (%) Bias (%) Factor |zk| (%)
Shape Texture Shape Texture Shape Texture Shape Texture Shape Texture Shape Texture

ShapeNet-SIN 79.8 20.2 26.2 23.3 86.6 13.4 28.1 20.7 82.1 17.9 26.4 22.1
MMSI-SIN 83.1 16.9 36.0 17.1 87.5 12.5 34.2 17.6 86.4 13.6 35.9 17.4

ShapeNet-SIN+IN 39.3 60.7 23.7 24.4 43.8 56.2 23.4 24.8 39.2 60.8 23.4 24.6
MMSI-SIN+IN 51.9 48.1 32.7 19.0 46.6 53.4 30.3 19.9 56.3 43.7 31.4 19.1

ResNet-IN 21.8 78.2 17.0 33.8 25.6 74.4 18.0 31.4 24.1 75.9 17.6 31.8
ShapeNet 22.9 77.1 18.4 31.2 25.1 74.9 18.2 31.2 26.2 73.8 18.3 31.3

MMSI 26.1 73.9 18.8 30.2 26.7 73.3 19.1 29.7 27.1 72.9 18.2 31.4

Table 1: Comparison of shape bias [14] and shape dimensionality [21] for different
ResNet [17] variants. We compare our approach, maximize mutual shape information (MMSI),
with vanilla ImageNet training (IN) and different training procedures of ShapeNet [14]. The
dimensionality measures the percentage of neurons in the latent representation (i.e., the final
stage after the global average pooling layer) which encode shape or texture.

cue-conflict images by performing style transfer based on Adaptive Instance Normaliza-
tion [20] with the style transfer coefficient set to α = 0.5. As in [14], we evaluate the models
on all 1,280 images and map the ImageNet class probabilities to the corresponding 16-class-
ImageNet fine-grained categories. We only consider the subset of correctly classified images
(i.e., either shape or texture category correctly predicted) to compute the biases. The results
of this comparison are presented in Table 1 under the ‘Bias’ heading.

Dimensionality Estimation of Shape Neurons. To quantify the number of shape neurons
encoded in the latent representation of a pretrained CNN, we use the approach of [8], where
the number of neurons that represent a certain semantic concept (e.g., shape or texture) is
estimated. To achieve this, we must use a dataset where we can choose image pairs which
share the semantic concept shape. Following [21], we generate the stylized PASCAL VOC12
dataset using PyTorch-AdaIN stylize algorithm [20]. Then we follow [8, 21] to calculate the
number of shape and texture encoding neurons in each network.
Discussion. Table 1 compares the shape and texture bias and dimensionality of ResNet
variants trained on ImageNet under different settings. As expected, MMSI based methods
produce more shape encoding neurons and ‘shape bias’ [14] than the baselines. For both
metrics, training a model solely on SIN encodes significantly more shape than the models
solely trained on IN or (SIN+IN). When the (SIN+IN) pretrained model is further fine-tuned
on IN, both the number of shape neurons and shape bias significantly drop; however, MMSI
still shows an increase in shape over ShapeNet [14] for both metrics. The results in Table 1
show that the global signal contained in our MMSI training objective produces networks
yields increases under two metrics which measure the amount of shape encoded in the model.

4.2 Robustness of Shape-based Representations.
We now evaluate the robustness of our model against adversarial attacks and explore its
generalization ability to common corruptions. Our goal is to test the hypothesis that models
with a greater capacity to represent shape results in increased robustness.

Influence of Shape on Adversarial Attacks. We evaluate the robustness of different
shape-based models against four different adversarial attacks: Fast Gradient Sign Method
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Method Clean
FGSM [15] PGD [29] I-FGSM [26] MIM [7]

ε = 2 ε = 4 ε = 8 ε = 16 ε = 2 ε = 4 ε = 8 ε = 16 ε = 2 ε = 4 ε = 8 ε = 16 ε = 2 ε = 4 ε = 8 ε = 16

ShapeNet-SIN 58.1 55.7 53.5 45.4 36.1 56.4 55.2 49.9 41.2 57.0 55.5 53.3 48.5 55.2 51.7 45.2 36.4
MMSI-SIN 59.9 56.8 54.4 48.2 36.9 57.7 56.3 52.5 41.8 57.6 56.7 54.4 50.3 56.7 54.6 47.3 36.4

ShapeNet 91.9 51.3 26.3 8.2 2.3 53.9 37.7 29.4 22.4 50.8 34.1 24.8 13.5 37.2 11.4 2.9 0.7
MMSI 92.5 73.4 61.2 49.1 37.7 77.5 69.5 57.5 42.5 78.5 66.3 47.0 25.2 68.4 47.3 23.1 10.9

Table 2: Classification accuracy on adversarial perturbed images, where a greater ε means a
larger attack. Our MMSI loss produces significantly more robustness to all attacks compared
with the training protocol from ShapeNet [14].

Method
FGSM [15] PGD [29] I-FGSM [26] MIM [7]

ε = .2 ε = .3 ε = .4 ε = .5 ε = .2 ε = .3 ε = .4 ε = .5 ε = .2 ε = .3 ε = .4 ε = .5 ε = .2 ε = .3 ε = .4 ε = .5

ResNet50-IN 53.4 37.8 30.0 24.1 39.2 23.1 12.5 6.7 43.5 25.8 16.5 8.8 46.1 28.9 19.5 11.1

ShapeNet-SIN 25.3 18.3 12.5 10.5 20.0 11.8 7.5 4.3 21.7 13.2 9.1 5.6 22.4 14.7 9.8 6.4

ShapeNet [14] 54.8 38.6 29.5 22.7 38.9 20.8 11.4 6.7 43.0 24.3 13.7 8.8 45.7 27.4 15.8 10.6

MMSI-SIN 25.2 19.3 11.5 10.4 18.4 10.2 5.4 3.0 19.6 11 6.8 3.6 21.2 12.3 7.7 4.7

MMSI 53.7 40.3 31.1 25.0 41.0 24.3 13.3 7.4 43.9 28.2 16.2 9.3 46.5 30.2 19.8 12.0

Table 3: Classification accuracy on adversarial perturbed images, where a greater ε means a
larger attack. The maximize mutual shape information (MMSI) loss produces more robustness
to all attacks compared with the training protocol from ShapeNet [14].

(FGSM) [15], Projected Gradient Descent (PGD) [29], Iterative FGSM (I-FGSM) [26], and
Momentum Iterative fast gradient sign Method (MIM) [7] (the latter two being iterative
attacks). We use the ImageNet compatible NeurIPS 2017 adversarial competition dataset1

to perform all the robustness experiments. We generate adversarial images by targeting
the ResNet-50 ImageNet pretrained model and evaluate on other shape-based models. The
attacks are therefore transferred and non-targeted to the shape-based models. We choose this
evaluation scheme to solely evaluate the performance difference between our model and that
of other shape-based training procedures (i.e., ShapeNet [14]). We set the perturbation, ε ,
between 2 and 16 in all experiments with pixel values in the range 0 and 255 which restricts
the maximum perturbation change per-pixel to ε = 16/255. We set the number of iterations
of I-FGSM and MIM to 10 and 5, respectively. We report the top-1 accuracy to show the
robustness of each model under different attacks.

The results of this comparison are presented in Table 2 and show that MMSI-trained
models are significantly more robust to all the adversarial attacks when trained under the same
data settings. Note that the difference is higher for iterative attacks (e.g., I-FGSM and MIM in
Table 2, right). Interestingly, our MMSI method, which has less shape bias and shape encoding
neurons than MMSI-SIN, is more robust against attacks compared to MMSI-SIN when the
value of ε is relatively small; however, for higher ε values (e.g., ε = 8,16) and iterative
attacks, MMSI-SIN significantly outperforms the MMSI model in terms of top-1 accuracy.
Apart from the iterative attacks with large ε values, MMSI has the highest robustness to most
adversarial attacks.

Now we evaluate the robustness of shape-based models against these attacks in the tar-
geted setting (i.e., each model is independently attacked). We set the perturbation, ε , between
[0.1,0.5] among all experiments with pixel values in [0,255]. Note that we choose smaller
epsilon values for this experiment as with higher epsolon values the performance degrades too
significantly to achieve any reasonable performance. Similar to untargeted settings, we set
the iteration size of I-FGSM and MIM to 10 and 5, respectively. We report the top-1 accuracy

1https://www.kaggle.com/c/nips-2017-non-targeted-adversarial-attack/overview
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to evaluate the robustness of each model. With respect to the shape-robustness hypothesis, we
draw similar conclusions as in [30]: while shape-centric models are generally more robust, a
higher shape bias does not always correlate with higher robustness against adversarial attacks,
contradicting the hypothesis that a higher shape bias will necessarily increase robustness. We
conclude that the robustness depends both on the type of encoding learned (i.e., shape and
texture) but also the type of attack (e.g., iterative).

Influence of Shape on Common Distortions. Next, we evaluate different shape-based
models in terms of their generalizability and robustness to common distortions and corruptions.

Method ImageNet-C Stylized-IN IN-Sketch

ShapeNet-SIN 34.9 50.6 27.0
MMSI-SIN 36.4 54.2 28.1

ResNet-50 37.7 7.1 23.1
ShapeNet 40.1 9.8 25.8
MMSI 40.2 9.6 25.3

Table 4: Comparison results on three
out-of-domain image recognition
datasets: ImageNet-C [18], Stylized
ImageNet (Stylized-IN) [14], and
ImageNet-Sketch (IN-Sketch) [33].

For these experiments, we use the ImageNet-C [18],
Stylized ImageNet [14], and ImageNet-Sketch [33]
datasets. Table 4 presents the accuracy on these three
datasets. MMSI-SIN outperforms ShapeNet-SIN train-
ing by a reasonable margin on the datasets: 36.4% vs.
34.9% on ImageNet-C, 54.2% vs. 50.6% on Stylized
ImageNet and 27% vs. 28.1% on ImageNet-Sketch.
Collectively, these results suggest that our MMSI train-
ing is an effective way to learn robust shape-based
representations compared to the vanilla SIN training
and successfully leads to consistent and substantial im-
provements when evaluated on shape-centric datasets.
Please see the supplementary for additional analysis in ImageNet-C dataset and effects.

4.3 Accuracy of Shape-based Representations

Method Fine-Tune
ResNet-50 ResNet-34

Top-1 Top-5 Top-1 Top-5

ShapeNet-SIN - 53.2 77.0 54.1 77.1
MMSI-SIN - 56.8 89.9 55.6 78.8

ResNet-IN - 75.8 92.7 73.3 91.3
ShapeNet IN 75.4 92.5 73.0 91.1

MMSI IN 76.2 92.9 73.4 91.3

Table 5: Performance comparison of
networks biased towards shape-based
representations on the ImageNet val set.

It is important to determine whether improvements
in robustness and generalization ability are at the
cost of performance on unaltered images. To this
end, we evaluate the classification accuracy of
MMSI on the ImageNet ILSVRC2012 dataset [6],
the results of which are presented in Table 5. Sur-
prisingly, MMSI does not sacrifice performance
and even gains marginal improvements over the
vanilla IN and ShapeNet in terms of top-1 and top-
5 accuracy. Our final model MMSI improves the
performance over the baseline ResNet50 by 0.4%, achieving 76.2% top-1 accuracy. These
results suggest that the MMSI guides the network to learn a beneficial holistic representation
of object shape, without removing the capacity to learn texture cues which are crucial to
classifying the fine-grained classes. As expected, the models solely trained on SIN have lower
performance. Also note that since the only difference between our objective functions and
ShapeNet is the MMSI loss, the improvements over ShapeNet can be largely attributed to this
loss and further demonstrate the efficacy of the MMSI objective.

4.4 Adaptability of Learned Representations

We now directly assess the quality of the representations learned using MMSI by fine-tuning
the trained network on different tasks. We aim to see whether shape-based representations are
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Method
Image Classification Semantic Segmentation CAMs

VOC2007 Caltech-101 CIFAR100 DTD VOC12 VOC12 VOC12
mAP(%) Top-1 (%) Top-1 (%) Top-1 (%) FT Freeze mIoU (%)

ShapeNet-SIN 90.7 91.0 80.8 67.0 55.7 40.0 42.6
MMSI-SIN 91.3 90.0 81.1 67.0 56.2 40.8 44.6

ResNet-IN 93.9 94.3 82.6 68.1 62.7 49.6 48.3
ShapeNet 93.8 94.2 82.7 67.6 62.5 47.4 48.3

MMSI 94.3 95.0 82.8 68.7 62.8 50.0 48.9

Table 6: We evaluate the fine-tuning performance of networks biased towards shape on
various downstream tasks. While the improvements are modest, our maximize mutual shape
information (MMSI) model consistently achieves the best performance, demonstrating the
generalizability of the learned shape-based representations from the MMSI objective.

beneficial for a number of image-level and per-pixel objectives for different datasets.

Transferability to other classification tasks. We first evaluate MMSI’s shape-based rep-
resentations by fine-tuning our pre-trained model on four different classification datasets:
PASCAL VOC 2007 [10], Caltech-101 [11], CIFAR-100 [24], and DTD [5]. We follow the
prescribed evaluation protocols and report the fine-tuning results using the standard metrics for
each benchmark in Table 6. The results show that MMSI representations consistently provide
a good initialization strategy to match or improve the performance on other classification
datasets without any architectural modifications.

Transferability to semantic segmentation. We now assess whether MMSI’s representations
can generalize beyond image classification tasks. We first fine-tune MMSI on the PASCAL
VOC12 dataset [9] for the task of semantic segmentation (see the supplementary for details).
The comparison results with the vanilla ResNet-50 and other shape-based methods are shown
in Table 6. MMSI (62.8%) marginally outperforms both ShapeNet (62.5%) and the ResNet-
50-IN baseline (62.7%). We also evaluate the read-out performance on PASCAL VOC12
(shown under VOC12 Freeze) to test the representations without fine-tuning the weights of
the network. In this setting, we freeze the weights of the ResNet-50 model and train a 1-layer
convolutional layer to predict the semantic segmentation output. As expected, we see a large
performance gain compared to ShapeNet, with a 2.6% improvement, and a moderate 0.4%
improvement over the vanilla IN trained model.

Transfer to pseudo-label generation using CAMs. We also evaluate the ability of MMSI
representations to generate pseudo-labels using Class Activation Maps (CAMs) [35]. Fol-
lowing [1, 2], we first generate CAMs for VOC12 training images by using a multi-label
classification network [17]. For a fair comparison, we initialize each network from the IN,
ShapeNet, or MMSI weights and then fine-tune each network on VOC12. We generate
pseudo-labels from the raw CAMs by thresholding their confidence scores (threshold is
set to 0.15) for each semantic category at every pixel. Table 6 (right column) presents the
comparison results of different shape-based methods in terms of the quality of the generated
pseudo-labels. We consider the generated semantic pseudo-labels as predictions and calculate
the mIoU between the pseudo-label and the segmentation ground-truth from VOC12. As
shown in Table 6, MMSI marginally outperforms the ShapeNet [14] and IN baselines. As the
CAM generations rely on both shape and texture cues, these results further demonstrate the
ability of the MMSI to encourage learning global object shape and texture information.
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4.5 Analysis of the MMSI Objective

Method mAP(%)

ResNet-50 [17] 91.8
+ MMSI (λm = 0.8) 92.5
+ MMSI (λm = 0.8) + style loss (λs = 0.1) 93.4

+ MMSIS5+S4 + style loss (λs = 0.1) 93.2
+ MMSIS5+S4+S3+S2 + style loss (λs = 0.1) 93.3

Table 7: Ablation study to test the hyper-
parameters of MMSI objective function. We
evaluate the multi-label classification perfor-
mance on VOC12 [9] to compare training ob-
jectives in ResNet-50 model.

We now provide an ablation study under
several different settings to investigate the
MMSI objective and motivate the selected
hyperparameters. We focus on two major
components to validate the significance of
MMSI: (i) training a network with and w/o
MMSI objective and (ii) applying MMSI on
different stages of a network. We present
quantitative results comparing different set-
tings in Table 7. We choose the PASCAL
VOC12 [9] classification dataset in this ex-
periment for computational efficiency. The classification performance, mAP, is improved
(91.8% vs. 92.5%) when the MMSI with a loss weight of λm = 0.8 is added with the baseline
ResNet-50 [17], which can be further improved by including cross-entropy (CE) losses on the
stylized images and non-stylized image. We empirically set the loss weight, λs = 0.1, for the
CE on the stylized images as increasing λs degrades the performance. We also tried applying
the MMSI loss at different stages of the network; however, the overall accuracy is not affected.

5 Discussion and Conclusion
We presented a simple and effective strategy to learn shape-centric representations for object
recognition while improving the network’s robustness and generalization. Our MMSI loss
maximizes the mutual information between latent representations of image pairs sharing
the same shape. We argued that this objective provides a more robust global shape training
signal, contrasting previous approaches which simply use image-level labels with stylized
images [14, 28]. We demonstrated the validity of this claim by using the previous metrics
of quantifying shape encoding, i.e., shape bias [14] and the number of shape encoding
neurons [21]. As expected, our approach contains significantly more shape in both regards.

While the main goals of this approach are to improve generalization and robustness, it is
important to also evaluate the performance on unaltered images using the MMSI objective.
Interestingly, we showed marginal improvements on ImageNet [6] both over the standard
training procedure and ShapeNet [14]. We explored our model’s robustness to adversarial
attacks and various distortions, as well as generalizabilty to downstream tasks. As expected,
our model showed a significant improvement in its robustness to various attacks and distortions.
We also concluded that iterative attacks (e.g., MIM [7]) harm the SIN trained models more
than the fine-tuned models, supporting previous work [30]. Finally, we showed that our MMSI
model also provides a strong pre-training initialization for a handful of different classification
and segmentation tasks, as well as showed moderate improvements when generating CAMs
based pseudo-labels. It is clear that the shape-centric representations learned using the MMSI
loss are beneficial in a multitude of ways. On top of improving robustness, generalizability,
and pre-training initialization for downstream tasks, we believe this simple yet effective
scheme to learn global object shape from 2D images will encourage the community to explore
similar research avenues to make inference models more robust and better overall.
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