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> Recent works have shown that models which strongly | Given an input image, we create two stylized images, by applying a style transfer _.

rely on texture information to make categorical algorithm (i.e., two different styles on the same image) such that the images share Method Topl1 Acc. Top5 Acc.
decisions perform poorly on out-of-domain examples. the same shape.
> We feed the original and the stylized images to the same CNNs to generate latent ResNet50 75.8 92.7
> Alternatively, networks which classify based on object representations ShapeNet 75.4 92.5
shape have improved generalization ability and > Then we maximize the number of neurons which encode shape by computing the MMS|
robustness. mutual information between the latent representations of the pair of images which 76.2 92.9 a. ..
share a semantic concept (i'e°7 Shape)' > Our method marginally outperforms | Image ResNet50 ShapeNet MMSI (Ours)
> The three representations are then passed through a shared classifier to obtain the the baselines on ILSVRC2012 > MMSI (ours) can take advantage of global object shape to
Contributions classification outputs which are used to compute the cross entropy losses. ImageNet dataset. produce a more reliable larger shape cue.

Shape Bias and Dimensionality

Adaptability of Learned Representations

Conclusions

> We propose a novel training loss for increasing a

neural network’s abﬂ]ty to encode Shape Bias Factor Image Classification Semantic Segmentation ~ CAMs > We presented d Simple and effective Strategy to
information Method Shape Texture  Shape Texture Method ~ VOC2007 Caltech-101 CIFARI00 DTD ~ VOCI12  VOCI2 VOC12 learn shape-centric representations for object
. ShapeNet 299 271 18.4 3192 mAP(%) Top-1 (%) Top-1(%) Top-1 (%) FT Freeze mloU (%) o i . . :
> QOur shape biased models are more robust to a ' ‘ ' ‘ ShapeNet-SIN ~ 90.7 91.0 80.8 670 557 40.0 42.6 recognition while improving the network's
adversarial attacks and distorted images, and MMSI (Ours) 261 739 188  30.2 MMSI-SIN ~ 91.3 90.0 811 670 562 40.8 44.6 robustness and generalization.
- —of-dictributi ResNet-IN 939 94.3 82.6 68.1 62.7 49.6 48.3 . . o
generahées better to out-of d?strlbutlon .exa.mples. S;SapZNet 93.8 949 99 7 676 625 474 48 3 > We achieved robustness without sacrificing overall
> We Otl)ltaln ?ll these benefits without SacrlﬁCIDg q > MMS]I haS more Shape encoding neurons and MMSI 94.3 95.0 82.8 68.7 62.8 50.0 48.9 C]assiﬁcation performance.
overall performance on ILSVRC2012 ImageNet an : : . . .
rans fell”)leaming on downstream tasks 8 higher bias than ShapeNet. > We directly assess the quality of the shape-based representations by > Our model showed a significant improvement in its

fine-tuning on different downstream tasks.

. . . robustness to various attacks and distortions.
> QOur approach marginally outperforms the baselines across various tasks.




