
➢ Given an input image, we create two stylized images,  by applying a style transfer 
algorithm (i.e., two different styles on the same image) such that the images share 
the same shape.

➢ We feed the original and the stylized images to the same CNNs to generate latent 
representations

➢ Then we maximize the number of neurons which encode shape by computing the 
mutual information between the latent representations of the pair of images which 
share a semantic concept (i.e., shape).

➢ The three representations are then passed through a shared classifier to obtain the 
classification outputs which are used to compute the cross entropy losses.

➢ We propose a novel training loss for increasing a 
neural network’s ability to encode shape 
information.

➢ Our shape biased models are more robust to 
adversarial attacks and distorted images, and 
generalizes better to out-of-distribution examples.

➢ We obtain all these benefits without sacrificing 
overall performance on ILSVRC2012 ImageNet and 
transfer learning on downstream tasks.

➢ Recent works have shown that models which strongly 
rely on texture information to make categorical 
decisions perform poorly on out-of-domain examples.

➢ Alternatively, networks which classify based on object 
shape have improved generalization ability and 
robustness.

➢ We directly assess the quality of the shape-based representations by 
fine-tuning on different downstream tasks.

➢ Our approach marginally outperforms the baselines across various tasks. 

➢  Evaluated on NIPS-2017-non-targeted-adversarial attack dataset.
➢ Our method is significantly more robust than the ShapeNet.
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➢ We presented a simple and effective strategy to 
learn shape-centric representations for object 
recognition while improving the network’s 
robustness and generalization.

➢ We achieved robustness without sacrificing overall 
classification performance.

➢ Our model showed a significant improvement in its 
robustness to various attacks and distortions.

➢  MMSI has more shape encoding neurons and 
higher bias than ShapeNet.

➢ Our method marginally outperforms 
the baselines on ILSVRC2012  
ImageNet dataset.

Results on  ILSVRC2012 ImageNet

➢ MMSI (ours) can take advantage of global object shape to 
produce a more reliable larger shape cue.
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