

SAMSUNG R VECTOR INSTITUTE runway

overall performance on ILSVRC2012 ImageNet and transfer learning on downstream tasks.

Maximizing Mutual Shape Information

Md Amirul Islam^{1,7} Matthew Kowal^{2,7} Patrick Esser⁶ Neil D. B. Bruce^{3,7}

Björn Ommer⁴ Konstantinos G. Derpanis^{2,5,7} ¹Ryerson University, ²York University, ³University of Guelph, ⁴University of Munich, ⁵SAIC Toronto, ⁶Runway, ⁷Vector Institute

Shape Bias and Dimensionality						Ada	ptab	oility o	of Lea	rned	Rep	resen	tatio
	Bi	Bias Factor		ctor			Image Classification				Semantic Segmentation		CAMs
Method	Shape	Texture	Shape	Texture		Method	VOC2007	Caltech-101	CIFAR100	DTD	VOC12	VOC12	VOC12
hapeNet	22.9	77.1	18.4	31.2			mAP(%)	Top-1 (%)	Top-1 (%)	Top-1 (%)	FT	Freeze	mIoU (%
					S	ShapeNet-SIN	90.7	91.0	80.8	67.0	55.7	40.0	42.6
MSI (Ours)	26.1	73.9	18.8	30.2		MMSI-SIN	91.3	90.0	81.1	67.0	56.2	40.8	44.6
						ResNet-IN	93.9	94.3	82.6	68.1	62.7	49.6	48.3
						ShapeNet	93.8	94.2	82.7	67.6	62.5	47.4	48.3
MMSI has more shape encoding neurons and					_	MMSI	94.3	95.0	82.8	68.7	62.8	50.0	48.9
higher bias than ShapeNet.						We direction	etly asse ing on o	ess the q different	uality of downst	the shaream ta	ipe-bas sks.	ed repres	sentatio

Influence of Shape on Adversarial Attacks

Method	Clean	FGSM	I-FGSM	Method	Clean	PGD	MIM
ShapeNet	91.9	2.3	13.5	ShapeNet	91.9	22.4	0.7
MMSI	92.5	37.7	25.2	MMSI	92.5	42.5	10.9
			1	1 • 1 1 1 .			

Evaluated on NIPS-2017-non-targeted-adversarial attack dataset. \succ \succ Our method is significantly more robust than the ShapeNet.

	Results on II	CAM V		
	Method	Top1 Acc.	Тор5 Асс.	
	ResNet50	75.8	92.7	In
	ShapeNet	75.4	92.5	
	MMSI	76.2	92.9	
	\succ Our metho	Ima		
ne	the baseline ImageNet d	\succ MN		
				l bio

ns by

 \succ Our approach marginally outperforms the baselines across various tasks.

isualization of Learned Representations

MSI (ours) can take advantage of global object shape to oduce a more reliable larger shape cue.

Conclusions

 \succ We presented a simple and effective strategy to learn shape-centric representations for object recognition while improving the network's robustness and generalization.

> We achieved robustness without sacrificing overall classification performance.

 \succ Our model showed a significant improvement in its robustness to various attacks and distortions.