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Abstract

Multi-View Stereo (MVS) has always been a challenging problem. Existing recon-
struction methods mostly rely on convolutional neural networks, which limits the ability
of the network to capture the global context of images, resulting in a lack of a certain
complete representation of the final depth map. In this paper, we propose a Global Con-
text Complementary Network (GCCN), which aims to enhance the complete representa-
tion of depth maps with a global context complementary learning strategy. Specifically,
for the feature maps, we first exploit the advantages of convolution neural network (CNN)
and self-attention to extract 2D local features and long-term dependence information, re-
spectively. Thus, GCCN achieves maximizing the preservation of the complementary
information. Furthermore, in the 3D cost volume regression stage, in order to obtain
richer 3D depth information, we design a Contextual-feature Complementary Learning
Module (CCLM), which utilizes global feature interaction in the cost volume to achieve
complementary learning of cost volumes at different scales. We conduct experiments on
the DTU benchmark dataset and the Tanks and Temples dataset. The results show that
our approach achieves significant performance compared to state-of-the-art methods.
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CVP-MVSNet(Baseline) Ours Ground TruthAA-RMVSNet

Figure 1: Comparison Between the State-of-the-art Learning-based Multi-view Stereo Ap-
proach [23, 25] and Ours. Best View on Screen. From left to right: Reconstructed Point
Clouds of CVP-MVSNet [25], AA-RMVSNet [23], CVP-MVSNet+Ours, and The Ground
Truth Point Clouds.

1 Introduction

Multi-View Stereo (MVS) reconstruction is still a hot topic over the past decade. MVS can
be regarded as an extensive process on the basis of structure-from-motion(SfM) [4, 5]. SFM
extracts and matches the feature points from multi-view images and then reconstructs the
sparse point clouds [19, 21]. Multi-view Stereo (MVS) aims to restore the realistic dense 3D
scenes through images taken from different viewpoints and calibrated cameras [18]. It’s a
core problem in the computer vision field and has wide applications in autonomous driving,
augmented reality, robotics, etc [1, 6].

One of the key advantages of deep learning-based MVS is cost volume regularization,
where most networks employ multi-scale 3D CNNs [3, 11, 12, 26] to regularize 3D cost
volumes. Nevertheless, 3D convolution operations bring great memory consumption and
time computational complexity. Therefore, these MVS algorithms are difficult to apply to
high-resolution scenes. To solve the above-mentioned problems, Yao et al. proposed a scal-
able multi-view stereo vision framework based on recurrent neural networks (R-MVSNet)
[27]. Zehao Yu et al. proposed a sparse-to-dense and coarse-to-fine Fast-MVSNet [28] for
fast and accurate MVS depth estimation. Cascade-MVSNet [8] adopted a cascade method
in cost volume regression and gradually regressed from coarse to fine to obtain a fine depth
map representation. The coarse-to-fine network structure design of cascade-MVSNet greatly
reduces the memory usage of MVSNet. Jiayu Yang et al. proposed CVP-MVSNet [25] for
depth inference, which built a cost volume pyramid in a coarse-to-fine fashion instead of at
a fixed resolution. The above methods greatly reduce memory consumption and improve
reconstruction accuracy. However, the reconstruction completeness is still not satisfactory
and misses some local areas in large scenes.

The ultimate goal of MVS research is to recover a complete and accurate 3D scenes. At
present, many MVS methods are devoted to using novel and efficient network structures to
increase their feature extraction and cost volume regression. However, given the aforemen-
tioned MVS pipeline, there are two main problems: (a) Local features are well captured by
convolutions. The locality of convolution features prevents the perception of global context
information, which is essential for robust depth estimation at challenging regions in MVS,
such as weak texture, repetitive patterns, and non-Lambertian areas. (b) When decoding
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matching costs, the features to be simply added, and potential depth information correspon-
dences are not taken into consideration. Convolution operation has strong ability to extract
local feature information, such as texture and color. However, for a whole input image,
the correlation degree of the relevant information of the image itself seriously affects the
learning of the global features of the object. Recently, [22] is initially proposed for natural
language processing, which has been widely employed for its great performance in the com-
puter vision community [29, 30]. Since the self-attention mechanism learns the relationships
between elements of a sequence. As opposed to convolution neural networks that process
images and can only attend to limited perspective fields, self-attention can attend to complete
images thereby learning long-range relationships. Self-attention modules complement con-
volutions and help model long-range, multi-level dependencies across image regions. With
self-attention, the network can capture images in which fine details in each local area are
carefully coordinated with fine details in distant parts of the image.

To this end, we propose a method using the Global Context Complementary Network
(GCCN) for multi-view 3D object reconstruction. The GCCN consists of three parts, of
which a Global Context Interaction Module (GCIM) can strengthen long-range global con-
text aggregation and local details within images. To better adapt GCIM into an end-to-end
learning-based MVS pipeline, we introduce a valid skip connection to ensure a smooth tran-
sition from locally aggregated features by CNN to features with a global receptive field
by GCIM. To fully preserve the underlying depth information in the 3D cost volume, we
bridge different depths features with a Contextual-feature Complementary Learning Module
(CCLM). Since remaining the global context-aware and more potential depth information
within views, GCCN achieves significant improvement in reconstruction completeness and
overall simultaneously on DTU dataset [1] (as shown in Figure 1). Moreover, the perfor-
mance of our GCCN can be generalized to more complex scenes, such as the intermediate
set of Tanks & Temples benchmark. Consequently, extensive experiments indicate that
our method achieves state-of-the-art performance. We also conduct ablation experiments
to demonstrate the effectiveness of each proposed module. Our contributions are as follows:

• We propose a novel end-to-end deep neural framework, namely Global Context Com-
plementary Network (GCCN), for robust long-range global context aggregation within im-
ages. Moreover, the combination of local and global information contributes to converge
network.

• In addition, to better regress the depth map, we introduce a contextual-feature comple-
mentary learning module to restore the 3D structure information of the scene.

• Our method achieves state-of-the-art results on the DTU dataset and the Tanks & Tem-
ples benchmark.

2 METHODOLOGY
In this section, we present our MVS method, named GCCN. Below, first, we provide a
network architecture of GCCN, then we elaborate on the details of its novel depth inference
module.

2.1 Network Architecture
As shown in Figure 2. We apply the recent CVP-MVSNet [25] as the backbone network in
our framework. Specifically, CVP-MVSNet first takes as input a reference image I0 ∈ RH×W ,
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Figure 2: Network architecture of the proposed Global Context Complementary Network
(GCCN) on CVP-MVSNet [25], denoted as CVP-MVSNet+Ours. It contains four compo-
nents: pyramid feature aggregation, Global Context Interaction Module, cost volume, and
3D U-Net regularization, and depth map estimation.

source images {Il
i }N

i=1 and the corresponding camera intrinsic and extrinsic parameters for
all views {Ki,Ri, ti}N

i=0 and infer the depth map D0 for I0. The entire architecture of CVP-
MVSNet contains four stages. Firstly, build an image pyramid from high to low resolution.
Then, extract features using FPN. Next, CVP-MVSNet adopts a cost-volume pyramid struc-
ture with weight shared across levels. The operation can be trained with low-resolution
images and still handle any high-resolution image during inference. Finally, CVP-MVSNet
regresses cost volume by 3D CNN and estimates the final depth map.

A Global Context Interaction Module(GCIM) designed, which involves two key points:
local detail extraction and global feature acquisition. This ingenious combination can not
only prevent network degradation, but also capture the long-term dependence between the
underlying semantic features and the high-level structural features. Therefore, the feature im-
age after contains rich local and global feature information. An effective contextual-feature
complementary learning module (CCLM) strategy is introduced in the regression calculation
of the 3D cost volume, which can complementarily learn the features of two input cost vol-
umes with different depths. Finally, by constraining depth maps with pixel-level losses, thus
the network can acquire more accurate 3D depth information about the objects.

2.2 Global Context Interaction Module (GCIM)
To improve the performance of the network in 2D feature extraction stage, we propose the
GCIM module, which can effectively combine the local and holistic features. For multi-view
3D object reconstruction tasks, the different input images correspond to different camera pa-
rameters. There are differences in the feature information contained in images from different
views, especially for the overlapping region, completeness of features from different view-
points will directly affect the quality of the final depth map. As shown in Figure 3, we
utilize convolutional neural network (CNN) to extract local details in the branch below. Si-
multaneously, we apply self-attention to learn the holistic information in the above branch.
Finally, according to the importance of channels, we employ SE [9] fusion module to better
integrate the complementary features of the local and long-term dependence features. Since
the attention mechanism attempts to explicitly model the channel interdependencies or spa-
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Figure 3: GCIM: The Architecture of Global Context Interaction Module.

tial correlation to enhance the learning of convolutional features, which aims to increase the
sensitivity of the network to informative features. The self-attention mechanism is to further
analyze the essential information from long-term dependence so that the network can focus
on these features. Convolution and self-attention are complementary learning from local
and global features, respectively, which preserve richer detailed features, thereby achieving
high-completeness 3D scene reconstruction. To prevent the network degradation, our GCIM
is based on the skip connection and self-attention mechanism, we adopt residual connections
at two points in the module. The feature maps X ∈ RC×H×W . Self-attention is defined as
follows:

Y = Att(X) = SoftMax
(
QKT )V (1)

where Q, K, and V represent query, key, and value respectively. Compared with the tradi-
tional convolution calculation, the self-attention calculation can be divided into three steps:
First calculate the Q, K, and value V . Then, the product KQT to measure their similarity;
Finally, it is weighted according to the calculated similarity and all steps are repeated for
each pixel in the image patch. In this paper, a residual connection is added after the GCIM
operation, and the feature map weighted by the learned mixed weight is added to the input
feature map to prevent the network from overfitting. The operation is defined as follows:

F−out = W ·Y +X (2)

where W consists of the learned parameters, that is, the weight matrix after mixing. F−out ∈
RC×H×W represents the feature map weighted by the GCIM and the input feature map after
mutual parameterization.
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2.3 Contextual-feature Complementary Learning Module (CCLM)
Most current learning-based MVS methods follow the MVSNet [26] approach to construct
3D cost volumes. As a core step connecting the 2D feature extraction and 3D regularization
network, the deformation of the source image viewpoint to the reference image viewpoint
is achieved in a differentiable case, and this depth map inference approach is trained in
an end-to-end manner. The benchmarking network CVP-MVSNet [25], its 3D cost volume
regression network adopts the standard 3D CNN U-shape network, the process is divided into
the encoding (down-sampling) part and decoding (up-sampling) part. The 3D cost volume
structure of the same depth in the encoding stage and the decoding stage adopts a direct
connection. Due to the limitations of the U-shaped structure itself, downsampling followed
by upsampling will lead to the dilution of high-level semantic information and the loss of
spatial information, thus affecting the final integrity of the depth map.

SoftMax



 

feature_x

feature_y

Fsa−XY

  Element-wise AddtionElement-wise Multilication1×1×1 convolution

Xout

Yout

F_XY

S

S

S_XY

Figure 4: CCLM: A Diagram of the Contextual-feature Complementary Learning Module.

High-completeness feature representations are essential for 3D scene reconstruction,
which could be obtained by capturing long-range contextual information and local feature
information. In order to effectively fuse 3D cost volumes and retain rich contextual relation-
ships of different depths, we employ the contextual-feature complementary learning module
(CCLM) to easily achieve high-completeness 3D cost volume regression. The CCLM de-
codes a wider range of contextual information between two-layer features into local features,
thus enhancing their representation capability. The specific operation steps of the CCLM are
shown in Figure 4. Given two-layer 3D cost volumes f eature_x, f eature_y ∈ RC×D×H×W

with inconsistent depths, we first feed them into a convolution layer with a stride 1×1×1
to generate two new feature maps Xout and Yout , respectively. After that, we perform a matrix
multiplication between the transpose of Xout and Yout , and apply a softmax layer to calculate
the spatial attention map S−XY , which is defined as:

Xout = Conv1×1×1( feature_ x)
Yout = Conv1×1×1( feature_ y)
S−XY = Softmax(Xout ⊗Yout)

(3)

Meanwhile, we perform a matrix multiplication between Yout and the transpose of S−XY
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to obtain the features F−XY . Finally, we perform an element-wise sum operation with the
f eature_y and F−XY , which is defined as:

F−XY = (S−XY )T ⊗Yout (4)

Fsa−XY = Conv1×1×1 (F−XY )+ feature_y (5)
where F−XY represents the correlation coefficient matrix of the input 3D cost volume f eature_x
and f eature_y, and Fsa−XY represents the 3D cost volume output after the contextual-feature
complementary learning module.

2.4 Training Loss
We utilize a loss function to constrain the error between the depth map and the ground truth
predicted by the 3D cost volume regression. The calculation formula adopts mean absolute
error (MAE) as the training loss of the network (Formula 6):

Loss =
L

∑
l=0

∑p∈Pvalid
∥d(p)−dp(p)∥1 (6)

where Pvalid represents the valid pixel set in the ground truth depth map, d(p) represents the
depth value of pixel p in the ground truth depth map and dp(p) donates the depth estimation
value predicted by the network. l represents the first layer of the pyramid image, as shown
in Figure 2, the predicted initial depth map is upsampled back to the same size as the input
image pyramid, and then its error values are accumulated layer by layer. During training, l
is set to 2.

3 Experiment
In this section, firstly we describe the datasets and training procedure adopted for GCCN,
then we compare it to state-of-the-art works on popular MVS benchmarks.

3.1 Datasets
DTU [1] Dataset: The DTU dataset is a large-scale MVS dataset that has 124 different
scenes with 49 scans using the robotic arms [1, 10]. Each scan has seven known pose
conditions as lighting changes. DTU provides 3D point clouds acquired using structured-
light sensors. Each view contains calibrated camera parameters and the corresponding depth
maps. We follow the same train-test split as in MVSNet [26] and other methods based on
MVS [8, 15, 25]. We select scenes {1, 4, 9, 10, 11, 12, 13, 15, 23, 24, 29, 32, 33, 34, 48, 49,
62, 75, 77, 110, 114, 118} as the testing set and other scenes as the training set.

Tanks & Temples [14]: The dataset is a large online benchmark that captures more com-
plex real-world indoor and outdoor scenes. It mainly contains pictures of tanks and temples,
which are used for 3D reconstruction tasks. Different scenes have different scales, surface re-
flections, and exposure conditions. The dataset includes a training dataset and a test dataset.
The test dataset is divided into the intermediate group and advanced group. In this paper,
the intermediate and advanced groups are used for testing, and the data includes sculptures,
trains, playgrounds, temples, and some buildings with appearance camera trajectories.
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DTU
Methods test set

Acc.(mm) Comp.(mm) Overall(mm)

Traditional

Camp [2] 0.835 0.554 0.695
Furu [6] 0.613 0.941 0.777
Tola [20] 0.342 0.190 0.766
Gipuma [7] 0.283 0.873 0.578

Learning-based

SurfaceNet [11] 0.450 1.040 0.745
MVSNet [26] 0.456 0.646 0.551
R-MVSNet [27] 0.383 0.452 0.417
P-MVSNet [16] 0.406 0.434 0.420
MVSCRF [24] 0.371 0.426 0.398
EF-MVS [15] 0.402 0.375 0.388
AA-RMVSNet[23] 0.376 0.339 0.357
Cascade-MVS[8] 0.325 0.385 0.355
CVP(Baseline) [25] 0.296 0.406 0.351
Ours 0.371 0.303 0.337

Table 1: Multi-view Stereo Quantitative Results of Different Methods on DTU [1] Dataset
(Lower is Better) Our Method Outperforms All Methods on Completeness and Overall Re-
construction Quality.

3.2 Implementation Details
During the training phase, we only use the training set of the DTU. Following the CVP-
MVSNet [25] work, this paper also uses a smaller resolution, 160×128, and estimates a
depth map that is the same size as the input image. For training, we downsample the high-
resolution image to a smaller size, then build the image and set the real depth pyramid level
to 2. To build the cost volume pyramid, we uniformly sample M = 48 depth hypotheses
across the entire depth range at the coarsest (level 2). Each pixel has M = 8 depth residual
hypotheses at the next level for refining the depth estimate. Models were trained using a
single NVIDIA Quadro RTX 6000 series graphics card. Its GPU with about 15G of available
memory can process multiple batches. The training batch size is set to 8. Training for a total
of 27 epochs, the learning rate for the initial epoch is set to 0.001, and at the 10th, 12th,
14th, and 20th epochs the learning rate is divided by 2. For a fair comparison with other
MVS methods, we use one reference image and two source images. In the testing phase, the
resolution of the input image is 1600×1184, and the pyramid has 5 layers. We implemented
our network using the popular deep learning framework Pytorch [17] and applied ADAM
[13] to optimize our model.

3.3 Comparison with State-of-the-Art Methods
Evaluation on DTU dataset We compare our method with both traditional methods and
recent learning-based methods. The quantitative results are shown in Table 1. Although
Gipuma [7] achieves the best performance in terms of accuracy, our method outperforms
all competing methods in both completeness and overall quality. In particular, the recon-
struction completeness and baseline methods have significantly improved. Figure 5 shows
the qualitative comparison with the result of CVP-MVSNet [25] and AA-RMVSNet [23].
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CVP-MVSNet(Baseline) Ours Ground TruthAA-RMVSNet

Figure 5: Comparison of reconstructed results with state-of-the-art methods [8, 25] on DTU
evaluation set. Qualitative results of scan9,scan13, and scan15. The zoomed local areas in
the point cloud are shown with a yellow rectangle. Our reconstruction contains more fine
detailed structures, which demonstrates the effectiveness of our method.

Model Architecture Mean Distance(mm)
GCIM CCLM Overall Comp. Acc.
# # 0.351 0.406 0.296
! # 0.353 0.307 0.400
# ! 0.345 0.310 0.380
! ! 0.337 0.303 0.371

Table 2: Performance Comparison When With or Without the Module We Propose.

Our method produces the most complete point clouds, especially in those textureless and re-
flected areas. Our reconstruction is cleaner around finely detailed structures, which validates
the effectiveness of our methods.

Generalization on Tanks & Temples dataset To further demonstrate the generalization
ability of our method, we test the proposed method on more complex outdoor Tanks and Tepmples
[14] dataset, using the model trained on DTU. The qualitative point clouds results of the
intermediate set and advanced set are visualized in Figure 6.

3.4 Ablation Experiments
To verify the effectiveness of our method in the baseline [25] network structure, the com-
pleteness and accuracy of the 3D object reconstruction results and the average comparison
of the two are performed on the DTU test dataset by us. And the accuracy and completeness
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Ballroom
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Family Panther

Temple

Playground

Figure 6: Point cloud reconstruction of Tanks and Temples dataset [14]. The first row shows
the qualitative results for the intermediate set, and the second row shows the qualitative
results for the advanced set. The zoomed local areas in the whole point cloud are shown
with a yellow rectangle. Best viewed on screen.

describe the error between the reconstructed 3D point clouds model and the ground truth
point cloud model, so the lower value means the better the model. As shown in Table 2, the
best results are shown in bold. The control variable method is adopted to verify each module
of the method in this paper. The ablation experiments show that the proposed method and
network architecture have robustness in multi-view 3D object reconstruction tasks.

4 Conclusion and Future work

In this paper, we have designed a Global Context Complementary Network (GCCN) for high
completeness MVS reconstruction, which focuses on long-distance dependencies, thereby
maximizing the preservation of on global information of the scene. Specifically, our global
context interaction module comprises effective context-aware information within images,
which focuses on global structure information of objects. In addition, we utilize the contextual-
feature complementary learning module to effectively fuse the cost volume features of dif-
ferent depths, and regress a higher completeness depth map.

For future works, we are interested in employing fast and efficient MVS structures such
as tensor decomposition, ensuring the completeness of large-scale scene reconstruction while
improving its accuracy.
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