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Abstract
For human gesture recognition task, recent fully supervised deep learning models

have achieved impressive performance when sufficient samples of predefined gesture
classes are provided. However, these models do not generalise well for new classes,
thus limiting the model accuracy on unforeseen gesture categories. Few-shot learn-
ing based human gesture recognition (FSL-HGR) addresses this problem by support-
ing faster learning using only a few samples from new gesture classes. In this paper,
we develop a novel FSL-HGR method which enables energy-efficient inference across
large number of classes. Specifically, we adapt a surrogate gradient-based spiking neu-
ral network model to efficiently process video sequences collected via dynamic vision
sensors. With a focus on energy-efficiency, we design two strategies, spiking noise sup-
pression and emission sparsity learning, to significantly reduce the spike emission rate
in all layers of the network. Additionally, we introduce a dual-speed stream contrastive
learning to achieve high accuracy without increasing computational burden associated
with inference using dual stream processing. Our experimental results demonstrate the
effectiveness of our approach. We achieve state-of-ate-art 84.75%, and 92.82% accuracy
on 5way-1shot and 5way-5shot learning task with 60.02% and 58.21% reduced spike
emission number respectively compared to a standard SNN architecture without using
our learning strategies when processing the DVS128 Gesture dataset.

1 Introduction
Vision-based human gesture recognition is an established topic in computer vision research
since it is the key component of various applications involving human-computer interac-
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tion [41] like sign-language translation [27], robot control [30], virtual manipulation [16],
daily care assistance [14] and entertainment [34]. Despite impressive performance achieved
by deep learning algorithms in recognising pre-defined gesture classes [16, 19, 22, 25], fully
supervised models hardly generalise well to new classes of gestures that have not been ob-
served during training.

Few-Shot Learning Human Gesture Recognition (FSL-HGR) methods are proposed to
address the challenges to build more generalised models [28, 41]. FSL algorithms adapt the
parameters of a pre-trained model using limited training steps and a small number of training
samples to perform well on new but related tasks. In the context of the gesture recognition
problem, a model trained using FSL has the capability to reliably recognise N newly defined
gestures when only K samples are available for each new gesture (termed as N-way K-shot
learning).

While significant progress has been made in the development of FSL-HGR models, their
deployment in the real-world is inhibited by the limited computation supported by edge de-
vices. Thus, model efficiency has emerged as a crucial factor when developing advanced
FSL approaches [38]. Recently, several attempts have been made to improve model effi-
ciency. For example, Dynamic Vision Sensor (DVS) camera has been applied as a privacy-
preserving and energy-saving device for gesture recognition applications [2]. DVS camera
is designed to capture illumination changes and generate asynchronous events using much
lesser energy compared to RGB cameras [4, 23]. Another attempt in this direction is the
development of an energy-efficient architecture, e.g., Spiking Neural Networks (SNN) [38].
Different from conventional neural networks, SNNs transmit and process information us-
ing binary sequences of spikes over time, which underlies their lower energy requirements
for computation [39]. However, the discontinuity characteristics of SNN hinder the train-
ing of its network via back-propagation method. To solve this issue, surrogate-gradient
approach [24] enables achieving performance comparable to deep neural networks.

In this paper, we propose a new FSL-HGR approach using surrogate gradient based
SNNs which are optimized for both performance and energy-efficiency. As described in
[12], the network is trained using two videos streams with different sampling rates which en-
ables capturing both high- and low-frequency variations in the input. To overcome the higher
computational burden imposed by multiple streams, we devleop a contrastive learning strat-
egy that enforces consistency between the feature representations obtained from different
streams during training, thus enabling inference using a single stream. To further improve
the model efficiency, we developed strategies of motion noise suppression and spike emis-
sion sparsity. Both of these strategies encourage generation of fewer spikes in all layers of
the network. Based on the comprehensive evaluation, we report the state-of-the-art results
for the DVS based FSL-HGR in terms of both model accuracy and its energy-efficiency. Our
key contributions are as follows:

• A new contrastive learning strategy is introduced to support model reliability of the
proposed FSL-HGR SNN model without increasing computational burden at inference
stage.

• We present a data pre-processing strategy, including spiking noise suppression and
motion trajectory enforcement, to improve model efficiency.

• We embed a channel-wise spike sparsity loss term in our loss function to further reduce
spike emissions to improve the model efficiency.
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2 Related work
Human Gesture Recognition has been an active research topic in the field of computer vi-
sion since it is a crucial component of human-computer interaction systems [41]. To achieve
reliable recognition performance, some work focuses on designing more effective feature
representations, e.g., [7, 8, 9, 40], while many explore the advantages from various modality
or multi-modality fusion, including the use of RGB-D camera [11], infrared sequences [36],
event-stream sensors [2, 21], or from skeleton tracking [5]. Although recent deep learning
based methods have reported impressive results when models are trained in a strongly super-
vised manner [10, 45], it is still under extensive investigation how to build more generalised
HGR model that can be scalable to related tasks in which new gestures are involved [15].

Few-shot Learning methods are proposed to improve the capability of model generali-
sation so that model could achieve better accuracy when only few samples of new classes
are provided. Few-shot learning approaches can be categorized into three classes: transfer
learning, meta learning and metric learning. Transfer learning and fine-tuning is the sim-
plest means by re-learning a pre-trained model with these few samples of new classes to
avoid overfitting [18]. While meta learning is composed of two learning stages, named base-
learner and meta-learner to obtain across-task meta-knowledge to enhance model generalisa-
tion. Two typical meta learning examples are MAML [13] and R2D2 [3]. In contrast to the
above-mentioned training methods, metric-learning based approaches, e.g., SiameseNet [17]
and ProtoNet [35], enforce the distances between query images and support classes to en-
large the classification boundary margins. Since the few-shot learning based methods can
be easily adapted to new tasks, they are well-suited to the real-world deployment of HGR
models.

Model efficiency has become more and more important for the purpose of deploying deep
learning models on affordable edge devices and reducing energy consumption [44]. Moti-
vated by these reasons, spiking neural network (SNN), a bio-inspired and energy efficient
network architecture, has attracted more research interest [32]. The classical unsupervised
SNNs, e.g., Hebbian learning [1] and Spike- Timing-Dependent Plasticity (STDP) [20], are
still inferior to recent supervised DL models although they have the advantages of high
training efficiency and are more device-friendly. Consequently, supervised SNNs has been
increasingly investigated to improve their model accuracy without compromising their effi-
ciency [10]. Surrogate gradient back-propagation method is a popular SNN model that has
achieved comparable accuracy with other DL based models [24].

In this paper, we focus on designing a SNN based FSL-HGR model to support the real-
time HGR system deployment on affordable devices. It is worth to mention that there are
several works which share similarity to our idea, including [15, 31, 37]. However, our work
differs from these methods on: (i) we adapt an advanced SNN model architecture from [10]
to improve the baseline performance significantly; and (ii) we have designed several novel
training strategies to further boost both the model accuracy and efficiency.

3 Proposed Method
The overview of our proposed FSL-HGR model is depicted in Figure 1. During training, like
ProtoNet [35], we randomly select two DVS sequences from the same class as the support
and query sequence in each iteration, where the support and query pairs are assumed to have
closer distance in the feature embedding space when model converges.
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Figure 1: The overview of our proposed FSL-HGR method with both the training and infer-
ence stages.

After extracting motion representations from the data and suppress the noise emissions
via the preprocessing module (Sec. 3.1), the signals activate neurons in the SNN model
(Sec. 3.2) to produce responses for the classification task. Regarding to the loss function
(Sec. 3.3), in addition to the classification loss term, we embed two extra loss terms in our
training to further improve the model reliability and efficiency. Specifically, a contrastive loss
term is used to enforce feature consistency between the main SNN model and an auxiliary
model that are deployed to process sequences with different frame rates, while a sparsity loss
term is defined to reduce spike emission numbers by decoupling spikes across channels.

At the inference stage, we only deploy the main SNN model and follow the process of
the few shot learning paradigm to compare the distances of the activated patterns between a
test sequence and the support gesture sequences. Given the few-shot classification task, the
gesture support set can be described as S = {(xi,yi) , i = 1, . . . ,n}, where xi is a sequence of
an event stream from few-shot gesture samples, and yi ∈{1, . . . ,K} is its corresponding label.
As illustrated in Figure 1, the support samples are mapped into the embedding space and the
prototype of class k is generated by averaging the support samples embedding vectors. The
test gesture is then classified into its closest class by using the following equation:

p(y = k | m) =
exp

(
−d( fφ (m),ck)

)
∑k′ exp

(
−d( fφ (m),ck′)

) , (1)

where d(·) denotes the Euclidean distance between the query gesture embedding fφ (m)
and the prototype of class ck.
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(a) (b) (c) (d)

Figure 2: Visualisation of an event frame representation in the positive polarity channel with
(a) original events; (b) with spatial noise suppression; (c) with spatial and temporal noise
suppression; and (d) with noise suppression and motion trajectory capture.

3.1 Pre-processing of DVS Sequences
DVS is a vision sensor that converts changes in brightness to binary dynamic signals with
enhanced privacy preservation [29]. The binary sparse nature of signals generated by DVS
sensors allows natural energy-efficient processing using SNNs. This motivated us to focus on
developing gesture recognition models that are tailored towards processing DVS sequences.

A DVS sequence can be represented as (h,w, p, t) where h,w are the spatial coordinates,
t is the timestamp and p refers to the binarised values of brightness changes between two
timestamps. Due to the high temporal resolution of original DVS sequences, we sub-sample
the DVS sequences following the process in [10] as expressed in the following equation:

Ft = q
(
F ′

t ′
)
, t ′ ∈ [β · t,β · (t +1)−1], (2)

where F ′ denotes the original continuous events stream. t ′ is the original time stamp, F
denotes the new events representation, t is the new time step, β is the temporal resolution
factor and q(·) is an aggregation function. We utilise the same aggregation function as in [10]
which involves stacking spikes in the two DVS channels and convert the signals back to
spikes by using a convolution layer as the spiking encoder. An example frame representation
from a DVS sequence is shown in Figure 2(a).

Many spikes in a DVS event stream are generated by illumination changes in the back-
ground [42]. These spikes lead to higher activation in shallower layers of SNNs leading to
higher compute requirements. Further, they may affect the performance of the model nega-
tively due to presence of noisy signals in the input. To deal with this issue, we added a noise
suppression stage during the preprocessing of the DVS sequences. Inspired by the classi-
cal DBSCAN algorithm [33], we assume that spatially or temporally sparse spiking activity
corresponds to noisy signals in the DVS sequence. The neighbourhood radius R and number
of spikes N to identify regions of dense spiking activity are set heuristically in this work. It
was observed that the final performance is relatively insensitive to these two hyperparam-
eters as long as they are set in a reasonable range. After noise suppression, the absolute
difference between frames [42] is presented to the network to highlight spikes representing
the motion trajectories. These preprocessing steps reduce the number of spikes generated
significantly thereby improving the energy-efficiency of the model (Figure 2). This is further
demonstrated in the ablation study in Section (4.3).

3.2 Network Architecture
Our SNN, illustrated in Figure 1, consists of four sequentially connected blocks, each of
which has the same structure. Each block consists of a convolution layer with 64 filters of
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size 3× 3 followed by a Max-pooling layer of size 2× 2. The spiking neurons used in the
network are Leaky Integrate-and-Fire (LIF) neurons. The membrane potential of an LIF
neuron at time t is given by the following equation:

τ
dU(t)

dt
=−U(t)+X(t), (3)

where U(t) represents the membrane potential of the neuron at time and X(t) represents
the input to the neuron and τ is the time constant of the neuron. When the membrane po-
tential exceeds a pre-defined threshold Uth, the neuron transmits a spike to all connected
downstream neurons and the membrane potential is reset to zero. The output of the spiking
neurons in the nth convolution layer can be expressed through the following equations

Ht,n = f (Ut−1,n,h(Wn,At,n−1)) , (4)

Zt,n = Θ(Ht,n −Uth) , (5)

Ut,n = Ht,n (1−Zt,n)+Ureset ·Zt,n, (6)

where n and t are indices for the layer and time-step. H and U are the the accumula-
tion process of the internal membrane potential and the initial value after firing the spike,
respectively. Z is a binarized output, it equals to 1 if the membrane potential H > Uth, which
is a pre-set threshold value, otherwise 0. W is the weight value. h(·) is the convolutional
layer or fully connected layer operation. f (·) is the computational equation of the spike
neuron model, and different models have their corresponding equations. Θ(·) is a Heaviside
step function which equals to 1 if its internal calculation is greater than 0, otherwise it is 0.
Combining Equation (4)(5)(6), the output of the current layer At,n can be described by the
following equation. In our work, we also report the performance of using several alternative
SNN neuron types, including IF, LIF, PLIF and LIAF, since they have different levels of
balance on efficiency and accuracy.

At,n =


Θ(Ut−1 +h(ωn,At,n−1)−Uth) for IF,
Θ
(
Ut−1 +

1
τ
(−(Ut−1)+h(ωn,At,n−1))−Uth

)
for LIF,

Θ

(
Ut−1 +

1
1+exp(−a) (−(Ut−1)+h(ωn,At,n−1))−Uth

)
for PLIF,

ReLU
(
Ut−1 +

1
τ
(−(Ut−1)+h(ωn,At,n−1))−Uth

)
for LIAF,

(7)

where τ is a pre-set time constant, a is a trainable parameter. The first three neuron
models are binarized outputs, while the LIAF model has floating outputs.

3.3 Training strategies and the loss function
Dual-speed stream contrastive loss: Performance of gesture recognition from video se-
quences is usually sensitive to the magnitude of movement in these videos. To improve
recognition of gestures with different magnitude of movements, two-stream or slow-fast net-
works have been proposed [12]. Slow-fast networks integrate feature representations from
two different networks which estimate probabilities of gesture classes based on inputs with
different frame rates. However, this design significantly increases the model parameters and
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doubles the computation required for inference. For this purpose, we propose a contrastive
loss that enables inference using a single network while retaining the performance-related
advantages of slow-fast networks. We refer the network trained using input at a higher frame
rate as the main network and the network trained using input at a lower frame rate is termed as
the auxiliary network. At the end of training, the auxiliary network is dropped and the main
network is used for inference. During training, the contrastive loss minimizes the difference
between the feature representations inferred by the main network and the auxiliary network.
The contrastive loss term between the features from these two networks are expressed in the
following equation:

Lc =− 1
N

N

∑
i=1

cossim
(

f F
φ (xi), f S

ζ
(xi)

)
, (8)

where cossim(.) is the cosine similarity, f F
φ
(xi) and f S

ζ
(xi) denotes the support gesture

embeddings in fast/slow streams, φ and ζ is the model paramaters of the fast/slow network,
N is the dimension of the feature representations.

Channel-wise sparsity loss: Inspired by the observation that spikes in channels become
more salient in deeper layers, we introduce a channel-wise sparsity loss to improve sparsity
and decouple the activation across channels. This helps reduce the number of spike emitted
in deeper layers of the network. The sparsity loss is expressed as follows:

Ls =− 1
HW

HW

∑
i=1

MSE
(
Max( f F

φ (xi)),Avg( f F
φ (xi))

)
, (9)

where Max and Avg is the maximum/average responses of each pixel in all channels of
the last layer, and H and W are the height and width of its output respectively.

Classification Loss: The classification loss we use is the traditional cross-entropy loss
between the prototype and query gesture. According to Eq. (10), the negative log-probabilities
of the class in both streams are minimized:

LF
d =− log p(y = k | mF), LS

d =− log p(y = k | mS), (10)

where LF
d and LS

d are the fast and slow stream loss respectively, mF and mS are the query
gesture sample in fast/slow streams.

The total loss function of the proposed model is defined in Eq. (11). Notably, we weigh
each of the loss terms equally to avoid overfitting and keep the training process simple.

L= LF
d +LS

d +Lc +Ls. (11)

4 Experiments

4.1 Experimental Setup
We use DVS128 Gesture dataset [2] to evaluate the performance of our method. This dataset
contains 11 classes of gesture tracks, e.g., waving and clapping, performed by 29 partici-
pants. Each gesture class has 122 video clips recorded under three lighting conditions, i.e.
natural light, fluorescent and LED. Each clip can be represented as (h,w, p, t), where h and
w are the height and width of the scene and represents the spatial information in the scene.
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Proposals Methods Fine Tune Aug. 5w1s Acc. 5w5s Acc.
LPR [37] Transfer Y Y 40.00% 43.30%

MAML [13] Meta Y F 45.50% 53.70%
SOEL [38] Transfer Y Y 64.70% 65.10%
MTO [15] Meta N N 63.20% 73.30%
PLIF [10] Metric N N 80.21% 88.53%

This Work Metric N N 84.75 % 92.82 %

Table 1: 6+5-WAY Few-shot accuracy on DVS-gesture.

Method Operations Latency(s) Energy(mJ) Energy ratio
Protot(TPU) [35] 3.89E10 5.40E−1 45.55 ×240

Protot(Memristor) [35] 3.89E10 6.80E−3 1.56 ×8
PLIF [10] 2.04E7 7.14E−2 0.48 ×2.5

Ours 1.29E7 4.52E−2 0.31 ×1.6
Ours(+N) 8.94E6 3.13E−2 0.21 ×1.1

Ours(+N+S) 8.23E6 2.88E−2 0.19 ×1

Table 2: Power consumption comparison results on 5w1s task, N is noise identification unit,
S is adaptive feature sparse loss.

p denotes the event polarity (positive and negative), and t is the recording duration which is
set to 300ms. The surrogate gradient [24] back-propagation method for SNNs with Adam
optimizer is used to update the network parameters.

4.2 Comparison to the state-of-the-art models

We evaluate our model with two few shot learning configurations, namely 5-way-1-shot task
(5w1s) and 5-way-5-shot task (5w5s). We randomly select 6 of the 11 gestures from DVS128
gesture dataset for model pre-training, and the remaining 5 gesture classes are used as the
few-shot test set to form the 6+5 way gesture recognition task. At the testing stage, the
sequences are obtained from 1000 randomly generated samples from the test data set, which
follows the evaluation protocol in [15, 35].

Total accuracy. Table 1 shows the accuracy of our method on 6+5 way few-shot gesture
recognition task compared to four benchmark methods. In addition to four FSL-HGR mod-
els, we also deploy the SNN model from [10] which is an SNN architecture originally trained
in a fully supervised manner. Our method achieves 84.75% and 92.82% in the 5-way 1-shot
and 5-way 5-shot tasks respectively without any augmentation and fine tuning procedures.
This is the best performance when compared to the other five methods.

Efficiency. To estimate the compute requirements on a supporting hardware, we com-
pute energy usage on a 5-way 1-shot gesture recognition task. Table 2 shows the results of
power comparison with other similar algorithms. The table 2 shows a comparison with the
energy consumption of a CNN prototypical network with TPU [26], on-chip implementation
(CNN on memristor) [43], base SNN model from [10] and several variants of our model,
i.e. our model without using any preprocessing and learning strategies, our model with only
noise suppression and our full model. Our results are from a deployment simulation on neu-
romorphic hardware (Loihi) for SNN, TPU and hybrid analogue-digital chip (Memristor)
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for CNN. For a fair comparison, we only calculate the inference time of the model while
ignoring the energy consumed by peripheral circuits. The energy calculations are based on
the officially published parameters of Loihi and analogue-digital chip [6, 43]. These re-
sults clearly demonstrate the great advantages of the two new efficiency-enhanced strategies,
which reduces the energy consumption significantly.

4.3 Ablation study

To investigate the influence of different time frequency on gesture events representation in
Eq. (2), we conduct several ablation studies on 5w1s and 5w5s task. In Figure 3, T denotes
the accumulations of event stream into T temporal bins. we test the performance in the
following scales T ∈ {5,6,8,12,16,20}. According to Figure 3, it can be observed that as
T increases to a certain level, the performance gains become insignificant with a slight drop
for very high values. Further, a high value of T implies that the network consumers more
energy since one process cycle requires computations on more frames.

To investigate the impact of contrastive loss and channel-wise sparsity loss on perfor-
mance, table 3 shows the weight comparision of three loss terms. It can be observed that
the contrastive loss improves the performance on both 5w1s and 5w5s tasks, and the sparsity
loss has an insignificant accuracy drop, i.e., 0.1% (5w1s) and 0.08% (5w5s).

To investigate the role of efficient learning strategies for each convolutional layer, Table 4
shows several metrics before and after optimization on the number of spikes generated. It
can be observed that the preprocessing step and the terms for sparsity loss reduce spiking
emissions across all layers, especially on first, second and fourth convolutional layers.

To investigate the impact of SNN neuron types, we compare several popular spiking
neuron models in another ablation study. In Table 5, we list the performance of four spik-
ing neuron models: Integrate-and-Fire(IF), Leaky Integrate-and-Fire(LIF), Parametric Leaky
Integrate-and-Fire(PLIF) and Leaky Integrate-and-Analog-Fire(LIAF) model. IF and LIF
are the most classical models, which accumulate internal voltages through inputs in the time
range. PLIF changes the time constant of the LIF formula to a learnable variable to improve
the model flexibility. While LIAF accumulates internal voltages like LIF but transmit analog
values instead of binarised spikes. It is found that LIAF achieves best performance but con-
sumes more energies due to its floating output. In contrast, LIF achieves a better trade-off
when considering both accuracy and efficiency.

Figure 3: Ablation study on T temporal bins with conventional one stream training [10] and
our proposed dual stream training with pre-processing step and the sparsity loss term on
5w1s and 5w5s tasks.
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α β γ 5w1s Accuracy 5w5s Accuracy
1 0 0 81.68% 89.97%
1 1 0 84.85% 92.90%
1 0 1 81.57% 89.89%
1 1 1 84.75% 92.82%

Table 3: Comparison of Loss weight. α , β , γ is the weight parameter of Ld , Lc and Ls
respectively.

Layers Nrg.(mJ) EFF. Nrg.(mJ) diff.
Conv1 4.53E−1 1.79E−1 ×0.39
Conv2 2.11E−2 1.21E−2 ×0.57
Conv3 7.03E−3 5.45E−3 ×0.77
Conv4 3.37E−4 1.42E−4 ×0.41

Table 4: Comparison of energy on each layer.
(EFF.) is our efficient learning strategy.

Model 5w1s Nrg.(mJ)
IF 77.15% 0.68

LIF 84.75% 0.19
PLIF 83.24% 0.25
LIAF 85.94% 2.26

Table 5: Comparison of differ-
ent SNN Neuron types.

5 Conclusion

In this paper, we presented a SNN model to recognize human gestures from DVS videos
when only few samples of gesture classes are provided. Our main focus in this work was
designing a more energy efficient FSL-GHR to facilitate the application deployment on af-
fordable devices. To achieve this goal, we proposed a pre-processing step and embeded
a sparsity loss term to reduce spike emission rates in the entire network. Without com-
promising the efficiency, we leveraged an auxiliary model to enforce a contrastive learning
constraint to improve our model reliability. In our future work, we will further investigate
how to make our model working under lifelong learning scenario for on-chip neuromorphic
computing.
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