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Abstract

Large-scale pretrained image-text models have shown incredible zero-shot perfor-
mance in a handful of tasks, including video ones such as action recognition and text-
to-video retrieval. However, these models have not been adapted to video, mainly be-
cause they do not account for the time dimension but also because video frames are
different from the typical images (e.g., containing motion blur, less sharpness). In this
paper, we present a fine-tuning strategy to refine these large-scale pretrained image-text
models for zero-shot video understanding tasks. We show that by carefully adapting
these models we obtain considerable improvements on two zero-shot Action Recogni-
tion tasks and three zero-shot Text-to-video Retrieval tasks. The code is available at
https://github.com/bryant1410/fitclip

1 Introduction
Imagine is winter season and our quest is to develop an auto-tagging system that recognizes
all the activities in our winter vacation footage. Luckily, there have been tremendous ad-
vances in the action recognition community [3, 7, 54]. For instance, we could leverage one
of the existing models that recognize up to 700 human actions [31]. Sadly, it turns out that
our family’s favorite activity, sledding, is not on the list of categories that these models can
recognize. In a traditional supervised setting, we would have to collect many sledding exam-
ples to train a new model. Such a process is labor-intensive, costly to create, and difficult to
scale to recognize further new activities. Instead, zero-shot models [6, 32, 47] can alleviate
such a burden by enabling recognition of unseen concepts.

Large pre-trained image-text models, such as CLIP [45] and ALIGN [29], have shown
outstanding zero-shot capabilities on a handful of visual tasks, including video tasks such
as Action Recognition and Text-to-Video Retrieval. Such models have overcome the limita-
tions of traditional zero-shot learning algorithms by using abundant images (on the internet)
with (free) natural language supervision. Despite their remarkable zero-shot performance
in video tasks, there is room for improvement to close the image-to-video domain gap. For
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instance, recent studies have shown that fine-tuning CLIP yields significant improvements in
target video tasks [36, 56]. Unfortunately, fine-tuning and improving performance in a target
dataset comes with a cost: harshly penalizing the model’s zero-shot capabilities [59].

There have been multiple efforts to train video-language models that can be employed
for various downstream video understanding tasks. Even though these approaches use video
data, their zero-shot capabilities remain poor compared to those exhibited by CLIP [45]. It
would be unfair not to mention that video-language pretraining methods either train with
clean yet two orders of magnitude smaller datasets [4], or with large datasets with un-
aligned natural language supervision [38]. The alternative is to scale up further the amount
of unaligned natural language supervision abundant on internet videos. In comparison,
ALIGN [29] (in the image space) has shown the ability to cope with noisy supervision by
scaling up to the billion-samples scale. However, replicating such experiments with video
data would only be possible for selected (if any) industrial players.

This work introduces FitCLIP, a fine-tuning strategy to adapt large-scale image-text pre-
trained models for zero-shot video understanding tasks. The goal of FitCLIP is to retain
the knowledge of CLIP [45] while gently adapting and learning how video data looks. Our
method leverages relatively small labeled and extensive pseudo-labeled video data to train
a student network. To validate the effectiveness of FitCLIP, we designed and set zero-shot
benchmarks for two popular video understanding tasks: action recognition and text-to-video
retrieval. Our experiments empirically validate the effectiveness of distillation to better train
and fine-tune multimodal video models and show that FitCLIP establishes a new state-of-
the-art for zero-shot video recognition and retrieval. Our design incorporates weight-space
ensembling in a strategic manner, which has not been explored before, as far as we know.
Contributions. Our key idea is to develop a method to refine large-scale pretrained image-
language models to zero-shot video use-cases. Our work brings two contributions:
(1) We introduce FitCLIP, a refinement strategy, and model for zero-shot video understand-
ing. The model leverages abundant knowledge in large-scale image models and a distillation
strategy to learn new video knowledge. We describe FitCLIP in (Section 3).
(2) We evaluate FitCLIP and competitive baselines in a newly designed zero-shot benchmark
(Section 4). Our experiments include results for two sets of video understanding tasks, action
recognition, and text-to-video retrieval, where we show the value of FitCLIP (Section 5).

2 Related Work
Zero-shot Video Understanding. Multiple zero-shot methods have been proposed to tackle
popular tasks such as action recognition [6, 8], text-to-video retrieval [60], and localization-
related tasks [28, 66]. Most of the zero-shot action recognition literature either follows an
attribute-based approach or leverages word embedding to transfer knowledge [6, 8, 18, 19,
28, 34, 37]. Differently, in the text-to-video retrieval task, zero-shot methods leverage large-
scale natural language supervision to pre-train video-language models. After pretraining,
these models can then be employed and tested in text-to-video retrieval tasks. Similar to
[4, 60], our work leverages natural language supervision from video titles to unlock zero-
shot capabilities. However, we focus on adapting already well-trained image-text models to
videos rather than learning a video-language model from scratch.

One of our goals is to establish a benchmark for zero-shot action recognition and text-to-
video retrieval. Previous efforts have devoted insightful analyses to creating true zero-shot
evaluation for action recognition [24]. These efforts are valuable for the traditional zero-shot
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setting where methods use a close vocabulary of (seen) actions, but they do not fit when zero-
shot models learn with natural language supervision. Instead, we follow standard (full) tests
on popular action recognition datasets and well-established text-to-video retrieval datasets.

Visual-Language Pretraining. Pretraining visual models with natural language became a
popular learning strategy in the image domain [10, 30, 41, 45, 50]. The idea of matching
images with text dates back to the late 90s when Mori et al. trained models to predict nouns
and adjectives from image-text pairs [41]. Others modernized this idea using large-scale
datasets to train CNNs [30]. However, only recently, Radford et al. took this idea to the next
level [45]. They trained CLIP, a dual image-text encoder, with more than 400M images and
text descriptions using a contrastive objective [42]. Our work builds upon CLIP and adapts
it to video use-cases while preserving its zero-shot capabilities.

Video-language pretraining also gained traction in the video space. Despite the progress,
it has been hard for video-language methods to compete in zero-shot settings with image-
language pre-trained models. We argue this is due to the limited availability of videos with
clean (and aligned) natural language supervision. For instance, Frozen in Time [4] trains
a transformer-based architecture on the WebVid dataset, which contains 2.5M humanly cu-
rated video-title pairs. The dataset is at least two orders of magnitude smaller than the dataset
to pre-train CLIP [45]. The importance of large and diverse data emerges when we compare
Frozen in Time with CLIP in zero-shot video tasks. Others [38, 39] have trained with the rel-
atively larger HowTo100M dataset, which contains 100M unaligned video-text pairs. Still,
the zero-shot capabilities of these models remain subpar to what CLIP can provide. Our
approach, FitCLIP, leverages the WebVid dataset [4] as a rich source to adapt CLIP for zero-
shot video understanding tasks.

Refining Large-scale Image Models. DistInit [22] explored distilling image models for
video. More recently, CLIP’s strong visual representation inspired multiple researchers to
explore its usage for video tasks [9, 15, 36, 44, 45, 56]. CLIP4Clip, for instance, pro-
posed a straightforward strategy to fine-tune CLIP for the text-to-video retrieval task [36].
Surprisingly, their simple method sets a new state-of-the-art in various datasets. Similarly,
ActionCLIP introduced a novel paradigm to action recognition harnessing CLIP’s general
visual knowledge [56]. While existing approaches effectively boost performance on target
datasets, and tasks, they have not show to preserve the original CLIP zero-shot capabilities
(also based on early experiments we ran).

3 Method: FitCLIP

Our goal is to train a model that expands and complements large image-language models
[29, 45] for zero-shot video (see Figure 1). To do so, we introduce FitCLIP, a refinement
strategy that leverages small labeled and large pseudo-labeled data together with existing
knowledge acquired from large image-text pairs. FitCLIP includes two steps. The first step
trains a model, in a Teacher-Student fashion, leveraging both: labeled video-text pairs and
pseudo-labels generated by a teacher model. The second step fuses the existing knowledge
of the teacher, a large-scale pre-trained image-language model, with the student trained on
video data. We call the resulting model the same as our refinement strategy, FitCLIP.

Citation
Citation
{Desai and Johnson} 2021

Citation
Citation
{Joulin, Van Derprotect unhbox voidb@x protect penalty @M  {}Maaten, Jabri, and Vasilache} 2016

Citation
Citation
{Mori, Takahashi, and Oka} 1999

Citation
Citation
{Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, Krueger, and Sutskever} 2021

Citation
Citation
{Srivastava, Salakhutdinov, etprotect unhbox voidb@x protect penalty @M  {}al.} 2012

Citation
Citation
{Mori, Takahashi, and Oka} 1999

Citation
Citation
{Joulin, Van Derprotect unhbox voidb@x protect penalty @M  {}Maaten, Jabri, and Vasilache} 2016

Citation
Citation
{Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, Krueger, and Sutskever} 2021

Citation
Citation
{Oord, Li, and Vinyals} 2018

Citation
Citation
{Bain, Nagrani, Varol, and Zisserman} 2021

Citation
Citation
{Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, Krueger, and Sutskever} 2021

Citation
Citation
{Miech, Zhukov, Alayrac, Tapaswi, Laptev, and Sivic} 2019

Citation
Citation
{Miech, Alayrac, Smaira, Laptev, Sivic, and Zisserman} 2020

Citation
Citation
{Bain, Nagrani, Varol, and Zisserman} 2021

Citation
Citation
{Girdhar, Tran, Torresani, and Ramanan} 2019

Citation
Citation
{Cheng, Lin, Wu, Yang, and Shen} 2021

Citation
Citation
{Fang, Xiong, Xu, and Chen} 2021

Citation
Citation
{Luo, Ji, Zhong, Chen, Lei, Duan, and Li} 2021

Citation
Citation
{Portillo-Quintero, Ortiz-Bayliss, and Terashima-Mar{í}n} 2021

Citation
Citation
{Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, Krueger, and Sutskever} 2021

Citation
Citation
{Wang, Xing, and Liu} 2021

Citation
Citation
{Luo, Ji, Zhong, Chen, Lei, Duan, and Li} 2021

Citation
Citation
{Wang, Xing, and Liu} 2021

Citation
Citation
{Jia, Yang, Xia, Chen, Parekh, Pham, Le, Sung, Li, and Duerig} 2021

Citation
Citation
{Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, Krueger, and Sutskever} 2021



4 CASTRO AND CABA HEILBRON: FITCLIP

Video Text

“Running women in 
a forest.”

Labeled Video-Text Pairs

Pseudo-labeled Video-Text Pairs

Videos Candidate Texts

“Serious thoughtful 
man drink beer.” 

Teacher Model

Predict

“Aerial shot of 
autumn forest field.”

Student Model

Visual Encoder

Text Encoder

FitCLIP

Teacher Model

Student Model

+

(1) Teacher-Student Fine-tuning (2) Fusing Teacher-Student Knowledge

Figure 1: FitCLIP refinement strategy and model. We propose a refinement strategy
to adapt large-scale image-text pretrained models. Our strategy first trains a model in a
Teacher-Student fashion. To do so, we leverage labeled and pseudo-labeled (with a teacher)
video-text pairs. This process, Step (1), yields a Student model that captures video-relevant
knowledge while being compatible with the teacher. In step (2), similar to [59], we combine
the Teacher and Student weights to create our final model, FitCLIP.

3.1 Teacher-Student Fine-tuning
Our goal is to train a model using video-text pairs while leveraging knowledge from image-
language representations. One alternative is to reuse image-language encoder weights and
fine-tune them in a target dataset [36, 56]. Such an approach is effective in boosting per-
formance for in-distribution datasets but tends to fail at preserving the zero-shot capabilities
of the original model’s weights due to catastrophic forgetting [16]. Instead, we focus on
gently refining the original image-language model’s weights by incorporating a two-fold
strategy. We use a small sample of labeled data to avoid model drift [46] (because of using
a much smaller batch size and less diverse dataset), and we regularize the learning process
by adding pseudo-labels generated with the original image-language model. Note that our
strategy shares intuitions with the Knowledge Distillation literature [25], where a Teacher-
Student analogy is used to describe the process of training a Student with priors derived from
a strong Teacher model. Figure 1 (step 1) illustrates the process to train our Student model.
Data Subsets. Our fine-tuning strategy relies upon two subsets of data: a small labeled
dataset of video-text pairs and an unlabeled (unaligned) set of video-text candidate pairs. The
labeled subset contains a collection of videos matched with one text describing their visual
content. These video-text pairs are of high quality and made by a human. The unlabeled
subset also contains a list of videos and a list of text descriptions. However, the match
between a video and the best describing text does not exist in this subset.
Teacher Model. The goal of the teacher is to provide soft pseudo-labels on unlabeled sets
of video-text candidate pairs. We adopt CLIP [45] as a teacher. CLIP includes an image
encoder and a text encoder, which were trained to predict the correct pairing of image-text
pairs using a contrastive objective [42]. In practice, we use CLIP to compute the similarity
between a subset of videos (within a large unlabeled set) and a set of candidate texts. Given
that CLIP only takes individual images as input, we pass N frames from the video through
its visual encoder and mean-pool the outputs into a single visual feature. We then use these
similarity scores as target soft pseudo-labels.
Student Model. We aim to train a student model that learns from video-text pairs and
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distills knowledge from large pretrained image-language models. As the student, we choose
the same dual architecture proposed by CLIP [45]. To train the model, we leverage two types
of supervision: samples from the manually labeled video-text pairs dataset and soft pseudo-
labels from the unlabeled set. Like the Teacher model, the student’s visual stream takes N
frames from each video and mean-pool the resulting representations into a single feature.
Student’s Training Objective. We train the student model with two losses: a loss to learn
from labeled samples, and a loss to distill the teacher knowledge via pseudo-labels. Given a
video-text pair denoted (v, t) our student’s dual encoder extracts a video representation zv and
a text representation zt . For labeled samples, we use the InfoNCE [42] loss to learn a video-
text correspondence. We follow [4, 60] and minimize the text-to-video and video-to-text
contrastive losses:

Lv2t = ∑
(v,t)∈Bl

log
ezv·z+t /σ

∑z∈{z+t ,z−t } ezv·z/σ
(1)

Lt2v = ∑
(v,t)∈Bl

log
ezt ·z+v /σ

∑z∈{z+v ,z−v } ezt ·z/σ
(2)

where σ is the temperature hyper-parameter, Bl is a batch of video-text pairs, z+t the pos-
itive text for the candidate video zv, z+v the positive video for candidate text zt , and {z−v ,z

−
t }

the negatives sets to contrast the candidate video and text representations. Then (Lv2t +Lt2v)
is the final labeled (contrastive) loss.

To distill knowledge from soft pseudo-labels generated by the teacher, we use the teacher’s
predictions as pseudo-labels [25] and minimize the cross-entry of the student’s scores rela-
tive to those from the teacher:

Ldistill,v2t = ∑
(v,t)∈Bl

exv·xt/σ

∑x∈T exv·x/σ
log

ezv·zt/σ

∑z∈T ezv·z/σ
(3)

Ldistill,t2v = ∑
(v,t)∈Bl

exv·xt/σ

∑x∈V ex·xt/σ
log

ezv·zt/σ

∑z∈V ez·zt/σ
(4)

where xv and xt are the teacher’s video and text representations, and V and T are the sets
of videos and texts in the batch.

Our final objective combines the contrastive and distillation losses as in Equation (5).
We scale the distillation loss, with λ , to prevent over-fitting to noisy pseudo-labels.

L= λ (Ldistill,v2t +Ldistill,t2v)+(1−λ )(Lv2t +Lt2v) (5)

3.2 Fusing Teacher-Student Knowledge
We aimed to train a competent student compared to the teacher. However, it is hard to
compete with the 400M image-text pairs that were used to train CLIP [45]. Therefore, our
goal is, instead, to fuse both: the general visual knowledge encapsulated by the teacher and
the video-specific properties learned by the student. There are multiple ways to ensemble
models [12]; however, given that our fine-tuning strategy gently adapts the teacher to video
use cases, we can leverage elegant weight-space ensembling techniques [20, 59]. We follow
the same approach in [59] to linearly combine the teacher and student weights (by α) and
create our final model, FitCLIP.
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3.3 FitCLIP’s Implementation Details
We uniformly sample N = 4 frames from each video, similarly to TSN [55]. The Teacher
and Student models both use a VIT-B/16 architecture initialized with OpenAI’s publicly re-
leased weights [45]. We empirically set λ = 10−4 to smooth the training process (note the
labeled and pseudo-labeled loss magnitudes may be wildly different). We consistently use
σ = 0.05 as temperature value. At training time, we randomly crop the frames to a size
of 224× 224, and perform random horizontal flips. We use the AdamW optimizer with a
learning rate equal to 3× 10−5. We use the same tokenizer as in CLIP [45]. We conduct
our experiments using 8x A100 (40GB) GPUs. We use 4.5K labeled videos, randomly sam-
pled from the WebVid-2.5M dataset [4], to compute the losses in Equations (1) and (2).
The entire WebVid-2.5M dataset is used to compute the distillation losses – Equations (3)
and (4). We choose the (labeled) validation loss in the WebVid-2.5M dataset as a criterion
to select the best student models. Finally, to fuse the teacher and the student weights, we
use α = 0.4. We encourage the reader to read the supplementary material for analyses to
some of the hyperparameter values. We wrote our code on Python using PyTorch [43] and
Lightning [14].

4 Zero-shot Video Understanding Benchmark

4.1 Baselines
CLIP [45]. This model has been pre-trained with the WIT dataset [49], which contains about
400M image-text pairs. We re-implement the zero-shot inference of this baseline model.
To deal with video, we encode N = 4 uniformly sampled frames per video and average
their features to obtain the final video representation. In all our experiments, we use the
publicly released CLIP ViT-B/16 [13] model. Note that our CLIP adaptation is equivalent to
ActionCLIP [56] (see Supplementary Material).
CLIP4Clip [36]. This method proposes changes on top of CLIP. In particular, they pro-
pose something the authors call post-pretraining that fine-tunes CLIP on the category “Food
and Entertaining” (380k videos) from the HowTo100M [38] dataset. The authors have not
provided this checkpoint, so we cannot evaluate it on our benchmarks. Still, we decide to
include the results they report. Nevertheless, note the evaluation conditions are not the same
to constitute a fair comparison (e.g., the authors sample more than 4 frames per video clip).
Frozen in Time [4] (Frozen). This model was pre-trained leveraging video-text pairs from
the WebVid dataset. There are multiple versions pre-trained versions for this model, includ-
ing one that leverages the well-curated CC3M image-text pairs dataset. In our (main) ex-
periments, we use the model that trains using the WebVid-2.5M, COCO, and CC3M dataset
(note this is much less data than CLIP’s pretraining dataset). Results for other versions of
Frozen in Time can be found in the supplementary material.
VideoCLIP [60]. This baseline uses a Transformer [53] on top of a frozen HowTo100M-
pre-trained S3D [65] video model from MIL-NCE [39] and a fine-tuned BERT [11] text
model. This method trains on HowTo100M. A notable difference is that VideoCLIP samples
32 clips of size 32 frames (1024 frames) for each video, while we sample only 4 frames for
each video.
VIOLET [17]. This method uses a video-language transformer trained end-to-end by mask-
ing discrete visual tokens. The authors use multiple training datasets including CC3M and
WebVid.
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BridgeFormer [21] (BF). This model leverages a multimodal encoder on top of the uni-
modal encoders and a method that masks the main verb and nouns as a for of multiple-choice
questions as a pre-text task. The authors find this method to be more sample efficient than
vanilla NCE.

4.2 Zero-shot Tasks and Datasets

Action Recognition. Our goal is to classify a video with one of C possible action classes. To
do so, we form pretext language queries with predefined prompts. An illustrative example
is the following prompt: "a video of a person {ci}", where ci is the i-th class out of the C
candidate action categories. Given the visual representation of the target video, we compute
its similarity with the language feature of each candidate action class prompt. We predict the
action class by selecting the visual-text pair with the highest similarity. We report the top-1
and top-5 accuracy. We evaluate zero-shot action recognition in two datasets:

• Moments in Time (MiT) [40] consists of 3-second YouTube clips that capture the dy-
namics of actions performed by varied subjects including animals and humans. The
dataset includes 339 categories and 33,900 validation videos.

• UCF101 [48] contains 101 action classes. Our zero-shot experiments in this dataset
aim to classify all the 1794 available test videos from the split 1.

Text-to-video Retrieval. Given a text query, the goal of text-to-video retrieval is to find a
video, from a collection, that visually matches the text description. Given that the concept of
classes does not exist in this task, previous methods [4, 36] denote experiments as zero-shot
when the visual-language models are not fine-tuned on the downstream datasets. To measure
performance, we report recall at k = {1,5,10} and the median ranking (MdR). We evaluate
zero-shot text-to-video retrieval in three datasets:

• MSR-VTT [61] contains video clips with a duration of up to 30 seconds paired with
captions. We adopt the 1K-A test split [64], which contains 1,000 video-text pairs.

• YouCook2 [67] comprises challenging cooking videos depicting fine-grained human
actions. We test on 3305 clip-text pairs [39].

• DiDeMo [2] contains mostly unedited video clips from Flickr. We follow [4, 33, 35]
and cast a video-paragraph retrieval problem. We evaluate on 4021 test samples.

5 Experimental Results
In this section, we conduct zero-shot experiments in two popular video understanding tasks,
and then a diagnostic analysis of FitCLIP. First, we study the performance of the zero-shot
baselines described in Section 4.1 in the task of action recognition. The second analysis
summarizes the baseline performance in diverse datasets for text-to-video retrieval. We run
diagnostic experiments to validate the importance of fusing the teacher knowledge, as in
[59], to a competent zero-shot model. Finally, we run performance analyses on FitCLIP that
study per-class gains in the action recognition task, and the shift in ranking distributions for
the text-to-video retrieval tasks.
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5.1 Zero-shot Action Recognition Results
We compare the zero-shot performance of FitCLIP and different baselines using two popular
action recognition datasets. We describe the results and provide our analysis.
Analysis on Moments in Time. Table 1a summarizes the zero-shot results in the moments
in time dataset. To establish a reference point, we also report VATT [1], the state-of-the-
art using full supervision. In this dataset, FitCLIP outperforms both baselines, CLIP and
Frozen, by a significant margin. It is noteworthy that CLIP, without seeing video data at
training time, still outperforms Frozen by 11% at top-5 accuracy. Despite CLIP’s good
performance, we observe that FitCLIP further improves performance by 4.3% (top-5) setting
a new state-of-the-art in this dataset. While FitCLIP achieves outstanding zero-shot results, a
e.g. 44.6% top-5 accuracy, there is still an ample gap with respect to approaches that leverage
supervision from the target dataset.
Analysis on UCF101. Table 1b shows the results on the UCF101 zero-shot benchmark.
FitCLIP outperforms CLIP at Top 5 accuracy and sligthly underperforms at Top 1. All the
findings remain consistent: a not-so-large gap between the best zero-shot and supervised
approaches and Frozen under-performing with respect to CLIP-based methods. We attribute
FitCLIP and CLIP close performance (when looking at both top-1 and top-5) due to the
characteristics of UCF101, which contains a lot of common actions, including many sport-
related actions. These types of actions often appear in photographs, and chances are, they
are well-represented in CLIP training set.

Method Top 1 Top 5
Supervised
VATT [1] 41.1 67.7

Zero-shot
Frozen 14.0 31.8
CLIP 19.9 40.3

FitCLIP 21.8 44.6

(a) Moments in Time (MiT)

Method Top 1 Top 5
Supervised
SMART [23] 98.6 –

Zero-shot
Frozen 51.9 76.1
BF [21] 51.1 –
CLIP 74.5 94.3

FitCLIP 73.3 95.3

(b) UCF101

Table 1: Zero-shot action recognition results. (a) FitCLIP improves performance upon
CLIP, and significantly outperforms Frozen. (b) FitCLIP shows slight improvements upon
CLIP; Frozen lags behind in terms of zero-shot performance. Reported numbers in both
tables are percentages and compute the top-1 and top-5 accuracy.

5.2 Zero-shot Text-to-video Retrieval
To compare FitCLIP and the baselines, here we report the experimental results and analysis
for the text-to-video retrieval task.
Analysis on MSR-VTT. Table 2a summarizes results in the MSR-VTT dataset. We observe
that Frozen performance is poor compared to that of CLIP and FitCLIP. Even though Frozen
was trained on video data with similar properties to MSR-VTT, it is hard for this model to
compete with the general knowledge encoded in CLIP-like models. We observe FitCLIP
consistently improves performance upon CLIP across all the retrieval metrics. These results
suggest that FitCLIP captures complementary video-language information that CLIP lacks.
Concerning the gap to reach the performance of the best-supervised approach, CAMoE [9],
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Method R@1 R@5 R@10 MdR
Supervised

CAMoE [9] 52.9 78.5 86.5 1
Zero-shot
VideoCLIP [60] 10.4 22.2 30.0 –

Frozen 21.3 43.6 55.9 7
VIOLET [17] 25.9 49.5 59.7 –

BF [21] 26.0 46.4 56.4 7
CLIP via [36] 30.6 54.4 64.3 4

CLIP4Clip [36] 32.0 57.0 66.9 4
CLIP 30.4 55.1 64.1 4

FitCLIP 33.8 59.8 69.4 3

(a) MSR-VTT

Method R@1 R@5 R@10 MdR
Supervised
TACo [63] 29.6 59.7 72.7 4

Zero-shot
VideoCLIP [60] 22.7 50.4 63.1 –

Frozen 3.2 10.1 16.2 135
CLIP 5.3 14.6 20.9 94

FitCLIP 5.8 15.5 22.1 75

(b) YouCook2

Method R@1 R@5 R@10 MdR
Supervised
CAMoE [9] 43.8 71.4 79.9 2
Zero-shot
VideoCLIP [60] 16.6 46.9 – –

Frozen 23.2 45.8 56.8 7
VIOLET [17] 23.5 49.8 59.8 –

BF [21] 25.6 50.6 61.1 5
CLIP 26.2 49.9 60.6 5

FitCLIP 28.5 53.7 64.0 4

(c) DiDeMo

Table 2: Zero-shot text-to-video retrieval results. In all datasets, FitCLIP improves upon
CLIP by significant margins. (a) FitCLIP’s shows the best zero-shot results though there is
an important gap with the supervised state of the art. (b) In this dataset, YouCook2, FitCLIP
exhibits the largest gap concerning fully supervised approaches and with VideoCLIP, that
pretrained on HowTo100M. We attribute this result to the fine-grained nature of the dataset.
(c) FitCLIP shows consistent boosts upon CLIP even for the DiDeMo (paragraph-retrieval)
task, which includes long language queries. R@k denotes recall at the top-k = {1,5,10}
predictions, and MdR refers to the Median Ranking metric.

FitCLIP does not lag that behind. Even though there is a 16.1% gap at R@10, we see that
FitCLIP closely approaches supervised performance at the MdR metric.
Analysis on YouCook2. We report zero-shot results for the YouCook2 dataset in Table 2b.
From the get-go, we observe the difficulty of this dataset. Even the state-of-the-art, TACo [63],
struggles to achieve more than 30% R@1. While we observe that FitCLIP’s performance
consistently outperforms other zero-shot baselines, we have observed a large overall gap be-
tween our method and those that are supervised or pretrained on HowTo100M [38] (Video-
CLIP [60] in the table). We hypothesize this is due to the fine-grained nature of the lan-
guage descriptions contained in YouCook2 and HowTo100M. Moreover, lots of videos in
this dataset are captured from an egocentric view.
Analysis on DiDeMo. Table 2c summarizes the results in DiDeMo’s paragraph retrieval
task. First, we observe that the performance of Frozen, VIOLET [17], and BridgeFormer [21]
approach the one achieved by CLIP in this dataset. Contrary to other datasets, DiDeMo con-
tains unedited, human-centric footage that shares commonalities with the WebVid dataset
used to train Frozen. Conversely, FitCLIP, which leverages both: the knowledge from CLIP
and the WebVid dataset, achieves the best performance overall. For completeness, we report
the CAMoE’s supervised performance [9], which is 15.9% better than FitCLIP, the most
competitive zero-shot alternative.

The results on these three datasets empirically demonstrate the value of FitCLIP to push
the limits of zero-shot text-to-video retrieval. FitCLIP establishes a new state-of-the-art in
zero-shot text-to-video retrieval across three different datasets. Despite such a milestone,
there is still room for improvement, especially in fine-grained datasets such as YouCook2.
We hope this benchmark promotes more work on zero-shot text-to-video retrieval.

5.3 Diagnostic Analysis

Impact of Fusing the Teacher-Student Knowledge (Table 3). One of the key properties
of FitCLIP is the ability to incorporate the student learning from video data, and knowl-
edge of the CLIP teacher. Here we report the performance of both our Student and Teacher
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Action Recognition Text-to-video Retrieval
UCF101 MiT MSR-VTT YouCook2 DiDeMo

Teacher (CLIP) 74.5 19.9 55.1 14.6 49.9
Student 64.7 17.7 52.6 9.7 42.4
FitCLIP 73.3 21.8 59.8 15.5 53.7

△ ↓ 1.2 ↑ 1.9 ↑ 4.7 ↑ 0.9 ↑ 3.8
Err. rate red. ↓ 4.7 ↑ 2.4 ↑ 10.5 ↑ 1.1 ↑ 7.6

Table 3: Impact of fusing teacher-student knowledge. △ denotes the absolute difference
in performance between FitCLIP and the Teacher model. We report the top-1 accuracy for
the zero-shot action recognition datasets, and the top-5 recall for the zero-shot text-to-video
retrieval ones. We observe that even though the Student model is weaker than the Teacher, it
still provides complementary information to FitCLIP, yielding consistent improvements (△)
across datasets. Full results with all the metrics in the supplementary material.

(CLIP) and contrast that with the final zero-shot performance obtained with FitCLIP. Table 3
summarizes the results. We observe that although the Student’s performance remains infe-
rior to that of the Teacher, it is close enough in various datasets, e.g. MiT, MSR-VTT, and
DiDeMo. △ denotes the difference in performance between FitCLIP and the teacher and
indirectly measures the contribution of the student learning. We observe that improvements
are consistent across all tasks and datasets. These results suggest that the Student effectively
passes complementary information to the teacher after weight assembling.

Additional Ablations. Due to space limitations, we include additional analysis in the Sup-
plementary Material. We compare the properties of FitCLIP vs. CLIP, do a deep-dive on the
impact of fusing the Teacher-Student knowledge, ablate weight-ensembling parameters, and
report comparisons with additional methods trained on HowTo100M.

6 Conclusions

This paper presents a fine-tuning strategy to adapt large-scale image-text pre-trained models
for zero-shot video understanding tasks, dubbed FitCLIP. FitCLIP performs well on zero-
shot settings for three Text-to-Video Retrieval and two Action Recognition tasks that we
evaluated. We show the importance of doing the weight-space ensembling step of our method
to keep or improve the teacher’s robust performance across different datasets, even when the
student was trained on different data. We highlight our method introduces no extra inference
costs while improving CLIP results overall.
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